Course Title	Engineering Mathematics for Advanced Studies					
Credit Structure	$\begin{array}{c c} L & T & P & C \\ \hline 24 & 0 & 0 & 0 & c \\ \hline \end{array}$					
	3/4 0 0 6/8					
Prerequisite	NA					
Targeted Audience	Graduate students taking up research activity Research oriented bachelor students interested to hone their skill in specific math modules that they have not worked on extensively in previous courses/research					
Objective	To make the student recall the basics of each course module and show them how it will be applicable for research in engineering domainExpected outcome is the understanding of the basic contents in the respective module in engineering context and with hands-on practice.					
Credit allocation	At least 6 modules to obtain minimum 6 credits.At least 8 modules to obtain 8 credits.Relative grading for each module followed by absolute grading will be adopted for final course grade assessment.					
Targeted Course Content	NOTE – Following is a tentative list of the modules floated for Autumn 2020. Final list will be decided after considering preference from the class.					
Module selectionA) PhD students:Module selection	Module-1: Linear Algebra: Linear algebraic equations, Vector Spaces, Orthogonality, Determinants, Eigen-values and Eigen-vectors of matrices, Singular-value decomposition					
should be by mutual agreement between student and faculty advisor. Please ensure pre-	Module-2: Ordinary Differential Equations: Terminology, Solution of Homogeneous and non-homogeneous 1 st order linear ODE, Bernoulli, Riccatti and Logistic equations, Solution of Homogeneous and non-homogeneous 2 nd order linear ODE, System of 1 st order ODE					
requisite module completion requirement for each module	Module-3: Vector Calculus: Dot and Cross Product, Curves, Arc Length, Curvature, Torsion, Divergence and Curl of a Vector Field, Line Integrals, Green's Theorem, Stokes's Theorem, use of Vector Calculus in various engineering streams					
B) MS Students: Modules mandatory for MS students-	Module-4: Laplace and Fourier transformation: First and Second Shifting Theorems, Transforms of Derivatives and Integrals, Fourier Cosine and Sine Transforms, Discrete and Fast Fourier Transforms, IVT and FVT significance					
EE: 1,3,4,6,7,8 ME: 1,2,3,4,5,6 C) B.Tech. Students:	Module-5: Partial Differential Equations: Basic Concepts of PDEs, Laplace, Poisson, Heat, Wave Equations, Solution by Separating Variables, Solution by Fourier Series, Solution by Fourier Integrals and Transforms, Solution using similarity variable					
Discussion with course instructor (SR) and faculty advisor with	Module-6: Numerical Methods: Methods for Linear Systems, Least Squares Householder's Tridiagonalization and QR-Factorization, Numerical interpolation Numerical integration, Methods for Elliptic, Parabolic, Hyperbolic PDEs,					
consideration to academic load and priorities is required	Module-7: Optimization and Linear Programming: Introduction to convex sets and functions, and its properties, Important standard classes such as linear and quadratic programming, Lagrangian based method, Algorithms for unconstrained and constrained minimization (example gradient descent).					
	Module-8: Probability Theory and Statistics: Experiments, Outcomes, Events, Permutations and Combinations, Probability Distributions, Binomial, Poisson,					

	and Normal Distributions, Distributions of Several Random Variables, Testing Hypotheses, Goodness of Fit, χ^2 -Test
	Module-9: Tensor Algebra: Index Notation and Summation Convection, Levi- Civita symbol, Triple vector product, Tensor Product, Dyads, transpose, trace, contraction, projection, spherical and deviatoric tensors, tensorial transformation laws. Gradient of scalar valued tensor function, Gradient of tensor valued tensor function
	Module-10: Complex Analysis and Potential Theory: The Cauchy-Riemann Equations, Use of Conformal Mapping, Electrostatic Fields, Heat and Fluid Flow Problems, Poisson's Integral Formula for Potentials
Texts/References	 Text Book - E. Kreyszig. Advanced Engineering Mathematics, John Wiley & Sons, 2011. A. Schrijver, Theory of Linear and Integer Programming, 1998. Gilbert Strang, Linear Algebra and Its Applications, 4th Edition, 2004. Gilbert Strang Differential Equations and Linear Algebra, 2014. Additional references- P.V. O'Neil. Advanced Engineering Mathematics, CENGAGE Learning, 2011. D.G. Zill. Advanced Engineering Mathematics, Jones & Bartlett Learning 2016. B. Dasgupta. Applied Mathematical Methods, Pearson Education, 2006.
Instructor (s)	Prof. SamarthR (SR)
Departments to whom the course is relevant	CS/EE/ME
Justification	Engineering mathematics is a key-tool necessary for the research students to be good in mathematical methods in order to model and analyze the experimental/computational data. In this course, students learn mathematical techniques in linear algebra, Vector calculus, Laplace and Fourier transformations, ODEs and PDEs, elementary numerical methods, probability foundations. Special modules Tensor algebra and complex numbers are facilitated for those who are interested. Modular structure of this course offers flexibility to students to optimally use this course for their specific needs.
Summary	10 modules, modular structure, Course grading - average of grades received in all modules selected by student.
Time slots:	Classroom instruction – Online mode

	Module Name	Instructor	Pre-requisite recommendation	Mandatory modules for MS	
			(not mandatory)	EE	ME
1	Linear Algebra	TBD		Y	Y
2	ODE	TBD			Y
3	Vector Calculus	TBD		Y	Y
4	Laplace/Fourier	TBD	2	Y	Y
5	PDE	TBD	2,4		Y
6	Num. Methods	TBD	1,2	Y	Y
7	OptimizationLPP	TBD	1	Y	
8	Probability&Stats	TBD		Y	
9	Tensor Algebra	TBD	1,3		
10	Complex Analysis	TBD	2,5		

 $Course \ webpage \ - \ \underline{https://homepages.iitdh.ac.in/~sraut/Au20_EnggMath/index.html}$

[Autumn 2020 v01]