Chemical and Biochemical Engineering

Semester VII								
S.No	Course Code	Course Name	L	Т	P	C		
1		HSS Elective	3	0	0	6		
2		Institute Elective-I	3	0	0	6		
3		Institute Elective-II	3	0	0	6		
4		Programme elective-V/ BTP-I	3	0	0	6		
5		Programme elective-VI	3	0	0	6		
6	CL403T	Advanced Transport phenomena	3	0	0	6		
		Total Credits				24		

Chemical and Biochemical Engineering

1	Title of the course	Advanced Transport phenomena				
	(L-T-P-C)	(3-0-0-6)				
2	Pre-requisite ourses(s) Reaction Engineering					
3	Course content	Introduction: Review of Transport Equations, Scaling and Ordering analysis, Asymptotic solutions. Exact solutions: Pul-satile flow in circular tube, Creeping flows and stream function solutions. Motion of deformable and slender bodies: Condi-tions at a deformable interface, Creeping flow past a drop, Marangoni E ects, Flows past Sphere and Oblate Solid bodies, Slender-Body Theory. Asymptotic Approximations for simple flows: Pulsatile flow limiting cases, Motion of fluid through curved tube, Bubble growth in Quiescent fluid. Thin films and Lubrication: Eccentric Couette cylinder, Lubrication theory, Slider block, Cylinder and Plane. Convective Heat and Mass transfer: Heat transfer from sphere (Pe << 1) in uniform and shear flow, Low Re expansion for Pe << 1, Pe >> 1 for low Re. Mass transfer from a Drop Laminar Boundary Layer Theory: Review of Boundary Layer Equations and Solution, Boundary layer separation, Approximate method to estimate shear stresses, Spherical bubble, Limiting cases of Thermal boundary layers. Natural convection: Boussines Equations, Combined forced and free convection, The Raleigh-Benard Problem.				
4	Texts/References	L. G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heinemann, 1992.				