
Computer Science Engineering

M. Tech Computer Science Engineering
Sr

No
Course

Code
Course Name L T P C

1 CS 402 Distributed Systems 3 0 0 6

2 CS 403 Graph Theory and Combinatorics 3 0 0 6

3 CS 410 Parallel Computing 3 0 0 6

4 CS 421 Logic for Computer Science 3 0 0 6

5 CS 426 Introduction to Blockchains 3 0 0 6

6 CS 427 Mathematics for Data Science 3 0 0 6

7 CS 438 Natural Language Processing 3 0 0 6

8
CS 439 Introduction to Sanskrit Computational

Linguistics
3 0 0 6

9 CS 633 Advanced Data Structure and Algorithms 3 0 0 6

10 CS 619 Advanced Data Structure and Algorithms Lab 0 0 3 3

11 CS 618 Advanced Software Development Laboratory 1 0 4 6

12 CS 634 Combinatorics and Probability 3 0 0 6

13 CS 601 Software Development for Scientific Computing 3 0 0 6

14 CS 603 Approximation algorithms 3 0 0 6

15 CS 604 Parameterized Algorithms and Complexity 3 0 0 6

16 CS 706 Topics in Parameterized Algorithms and Complexity 3 0 0 6

17 CS 606 Advanced topics in Embedded Computing 3 0 0 6

18 CS 607 Advanced Computer Networks 3 0 0 6

19 CS 608 FPGA for communication networks prototyping. 3 0 0 6

20 CS 609
Software Defined Networking (SDN) and

Network Function Virtualization (NFV)
3 0 0 6

21 CS 610 Advanced Distributed Systems 3 0 0 6

22 CS 612 Statistical Pattern Recognition Laboratory 0 0 3 3

23 CS 616 Statistical Pattern Recognition 3 0 0 6

24 CS 621 Logic and Applications 3 0 0 6

25 CS 622 Special Topics in Automata and Logics 3 0 0 6

26 CS 624 Compilers - Principles and Implementation 3 0 0 6

27 CS 810 Advanced Computer Architecture 3 0 3 9

28 EE 609 Pattern Recognition and Machine Learning (PRML) 3 0 0 6

29 EE 612
Pattern Recognition and Machine Learning (PRML)

Laboratory
0 0 3 3

30 EE 606 Neural Networks and Deep Learning (NNDL) 3 0 0 6

31 EE 611
Neural Networks and Deep Learning (NNDL)

Laboratory
0 0 3 3

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Distributed Systems

(3-0-0-6)

2
Pre-requisite

courses(s)
Operating Systems, Data Structures and Algorithms, Programming in C++

3 Course content

• Introduction to distributed systems, Message Passing, Leader Election,

Distributed Models, Causality and Logical Time

• Logical Time, Global State & Snapshot and Distributed Mutual Exclusion-

Non- Token and Quorum based approaches

• Distributed Mutual Exclusion-Token based approaches, Consensus &

Agreement, Checkpointing & Rollback Recovery

• Deadlock Detection, DSM and Distributed MST

• Termination Detection, Message Ordering & Group Communication, Fault

Tolerance and Self-Stabilization, Gossip Style communication, chord, pastry

• Concurrency and Replication Control, RPCs, Transactions

• Distributed Randomized Algorithms, DHT and P2P Computing

• Case Studies: GFS, HDFS, Map Reduce and Spark

4 Texts/References

• Distributed Computing: Principles, Algorithms, and Systems- Ajay D.

Kshemkalyani and Mukesh Singhal

• Distributed Computing: Fundamentals, Simulations and Advanced Topics-

Hagit Attiya and Jennifer Welch

• Distributed Algorithms-Nancy Lynch

• Elements of Distributed Computing-Vijay

K. Garg

• Advanced Concepts in Operating Systems-Mukesh Singhal, Niranjan G.

Shivaratri

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Parallel Computing

(3-0-0-6)

2
Pre-requisite

courses(s)
Exposure to C, C++ or Fortran programming

3 Course content

Need for High Performance Computing (HPC) and applications.

Sequential Computing model, Algorithms and their complexity.

Taxonomy of computer architectures – SISD, SIMD (e.g. array processors),

MISD (pipelined processing, vector processors), and MIMD (shared memory

and distributed memory multiprocessors, computing clusters); dataflow

computing; hardware accelerators (GPUs); interconnection networks (bus,

loop, mesh and hypercube); Memory hierarchy; Case Studies.

Implications of computer architectures to algorithm design, synchronous

processing, single program multiple data (SPMD) and multiple program multiple

data (MPMD) processing; functional and data parallelism; memory hierarchies.

Performance evaluation: communication and computing costs, speedup, efficiency,

Amdahl’s law, parallel scalability.

Parallel algorithm design and case studies: numerical algorithms (linear algebra,

matrix- vector and matrix-matrix multiplications, finite difference method and

PDEs, Monte Carlo method), and non-numerical algorithms (search, sorting,

simple tree and graph algorithms)

Parallel programming platforms, OpenMP and MPI programming, GPU

programming.

Programing Assignments:

1. Parallel computing lab environment (system architecture, log on, hello world

2. Editors, job submission, optimization techniques for serial code.

3. MPI and simple program(s)

4. MPI and matrix-matrix multiplication

5. OpenMP and matrix-matrix multiplication OpenMP

6. Introduction to GPU programming – matrix-matrix multiplication.

4 Texts/References

1. Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction

to Parallel Computing, Addison Wesley 2003

2. Eric Aubanel, Elements of Parallel Computing, CRC Press, 2017.

3.https://computing.llnl.gov/tutorials/mpi/

4.https://computing.llnl.gov/tutorials/open MP/

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Logic for Computer Science

(3-0-0-6)

2
Pre-requisite

courses(s)

Discrete Mathematics, Theory of computation.

3 Course content

1. Module 1 :Propositional Logic: Syntax, Semantics, Normal Forms,

Boolean Functions.

2. Module 2: Computational complexity of Satisfiability P vs NP, SAT:

hardest among NP.

3. Module 3: Syntactic SAT solvers : Resolution, Tableaux.

4. Module 4:proof Systems: Semantic entailment, Compactness, Soundess

Completeness, Natural Deduction, Gentzen Sequent Calculus, Hilbert

System.

5. Module 5: Predicate Logic. Randomized SAT solvers. Programming

assignments: using SAT/SMT solver z3.

4 Texts/References

1. Logic in Computer Science, Michael Huth and Mark Ryan, Cambridge

University Press.

2. SAT/SMT by example, Dennis Yurichev.

Computer Science Engineering

1

Title of the course

 (L-T-P-C)

Introduction to Blockchains

(3-0-0-6)

2
Pre-requisite

courses(s)

It is expected that students should have a very good programming background

preferably in Java/JavaScript and Python.

3 Course content

Basics - What is Blockchain, Centralized vs Decentralized vs Distributed,

Blockchains and Public Ledgers,

Fundamentals - Cryptographically secure hash functions, Merkle Trees, Bitcoin

Concept

Architecture - Blockchain 2.0, smart contracts, block structure, notion of

distributed consensus, challenge response to Permission-less Consensus,

economics behind blockchain consensus

Consensus in Blockchain - Distributed Consensus, Proof of Work, Miners in the

context of Bitcoin

Permissioned Blockchain - Basics, RAFT Consensus, Byzantine General

Problem, Practical Byzantine Fault Tolerance

Hyperledger Fabric - Introduction, Transaction flow, Membership and Identity

Management, Hyperledger Composer"

Ethereum Framework - Installation and subsequent execution of the use cases.

Blockchain in Financial Service - Payments and Secure Trading, Compliance and

Mortgage, Financial Trade

Blockchain in Supply Chain

Blockchain in Government Use Cases - Digital Identity"

Mini Project implementation using Ethereum/Hyperledger framework on use

cases related to financial, supply chain, and government sectors

4 Texts/References

Arvind Narayanan, Joseph Bonneu, Edward Felten, Andrew Miller, Steven

Goldfeder, “Bitcoin and Cryptocurrency Technologies – A Comprehensive

Introduction”, Princeton University Press, 2016.

Research papers as well as several related online educational content will also be

referred to for learning some of the afore-mentioned topics.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Graph Theory and Combinatorics

(3-0-0-6)

2
Pre-requisite

courses(s)
Discrete Structures

3 Course content

Fundamentals of graph theory. Topics include: connectivity, planarity, perfect

graphs, coloring, matchings and extremal problems.

Basic concepts in combinatorics. Topics include: counting techniques, inclusion-

exclusion principles, permutations, combinations and pigeon- hole principle.

4 Texts/References

“An Introduction to Quantum Field Theory”, Michael Peskin and Daniel Schroeder

(Addison Wesley)

 “Introduction to Quantum Field Theory”, A. Zee

“Quantum Field Theory”, Lewis H. Ryder

 “Quantum Field Theory and Critical Phenomena”, by Jean Zinn-Justin.

“Quantum field Theory for the Gifted Amateur”, T. Lancaster and Stephen J.

Blundell

NPTEL lectures in Quantum Field Theory (https://nptel.ac.in/courses/115106065/)

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Mathematics for Data Science

(3-0-0-6)

2
Pre-requisite

courses(s)

Exposure to basic concepts in calculus and linear algebra

3 Course content

Introduction to Data science and Motivation for the course.

Review of calculus, naTve set theory, notion of limits, ordering, series and its

convergence. Introduction to Linear Algebra in Data science, notion of vector

space, dimension and rank, algorithms for solving linear equations, importance of

norms and notion of convergence, matrix decompositions and its use.

Importance of optimization in data science: Birds view of Linear Regression,

Multivariate Regression, Logistic Regression etc.

Convex Optimization: Convex sets, convex functions, duality theory, different

types of optimization problems, Introduction to linear program.

Algorithms: Central of gravity method, Gradient descent methods,

Nestrov acceleration, mirror descent/Nesterov dual averaging, stochastic gradient

methods, Rmsprop, SIGNSGD, ADAM algorithm etc.

Non-convex optimization: Demonstration of convex methods on non-

convex problems; merits and disadvantages.

4 Texts/References

1. C. Bishop, “Pattern Recognition and Machine Learning,”Springer, 2006.

• 2. Cambridge university press, 2018 (reprint). for Machine Learning,” Now

publisher, 2017.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Advanced Data Structure and Algorithms

(3-0-0-6)

2
Pre-requisite

courses(s) None

3 Course content

Module 1: Basics: asymptotic notations, recurrences, basic data structures

Module 2: Advanced data structures: heaps, priority queues, hash tables, data

structures based on trees.

Module 3: Design paradigms and complexity analysis: divide and conquer,

dynamic programming, greedy algorithms, amortized analysis.

Module 4: Advanced topics: graph algorithms, string algorithms, geometric

algorithms, complexity lower bounds, coping up with hard problems.

4 Texts/References

Introduction to algorithms: Cormen, Leiserson, Rivest, and Stein (Main textbook)

Online lecture notes by Jeff Erickson

The Algorithm Design Manual: Steven Skiena Algorithm Design: Kleinberg and

Tardos

Data structures and algorithm analysis in C++ (Java): Mark Weiss

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Advanced Data Structure and Algorithms Lab

(0-0-3-3)

2
Pre-requisite

courses(s) None

3 Course content

Module 1: Basics: asymptotic notations, recurrences, basic data structures

Module 2: Advanced data structures: heaps, priority queues, hash tables, data

structures based on trees.

Module 3: Design paradigms and complexity analysis: divide and conquer,

dynamic programming, greedy algorithms, amortized analysis.

Module 4: Advanced topics: graph algorithms, string algorithms, geometric

algorithms, complexity lower bounds, coping up with hard problems.

4 Texts/References

Introduction to algorithms: Cormen, Leiserson, Rivest, and Stein (Main textbook)

Online lecture notes by Jeff Erickson

The Algorithm Design Manual: Steven Skiena

Algorithm Design: Kleinberg and Tardos

Data structures and algorithm analysis in C++ (Java): Mark Weiss

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Advanced Software Development Laboratory

(1-0-4-6)

2
Pre-requisite

courses(s) None

3 Course content

Editing: Vim/emacs,

Presentation: latex, beamer, Build, Integration and Deployment, Version Control,

and Documentation: make, GitHub and git, doxygen

Programming: HTML, CSS, Shell scripting, AWK, SED

Exploring features of IDE (e.g., eclipse, vscode) using a high-level

programming language such as Java, Python, C++, debugging (using gdb,

using IDE).

Unix/Linux basics: shell, file system, permissions, process hierarchy, process

monitoring, ssh, scp, rsync, grep, find, head, tail, tar, cut, sort, I/O redirection,

pipes.

Profiling tools: (e.g., gprof, prof, perf, valgrind) A medium-sized project with

significant weight.

4 Texts/References

1. Online tutorials for HTML/CSS, Inkscape, OODrawUnix Man Pages for

all unix tools, Advanced Bash Scripting Guide from the Linux

Documentation Project (www.tldp.org).

2. The Python Tutorial Online Book (http://docs.python.org/3/tutorial/index.html).

3. The Java Tutorials (http://docs.oracle.com/javase/tutorial/).

4. Latex - A document preparation system, 2/e, by Leslie Lamport, Addison

Wesley, 1994.

5. Make https://www.gnu.org/software/make/manual/html_node/index.html#Top.

6. Git - Git - Book (git-scm.com)

7. GDB Documentation (sourceware.org)

8. Valgrind

9. Doxygen - My Project: Documenting the code (doxygen.nl)

10. Gprof - GNU gprof

http://www.tldp.org/
http://docs.python.org/3/tutorial/index.html
http://docs.oracle.com/javase/tutorial/
https://www.gnu.org/software/make/manual/html_node/index.html#Top

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Combinatorics and Probability

(3-0-0-6)

2
Pre-requisite

courses(s) None

3 Course content

Combinatorics:

Principles of counting: rule of sum, rule of product, permutations, combinations.

partition, modular arithmetic. Double counting, generating functions.

Binomial coefficients, binomial theorem.

multinomial theorem Probability theory: probability axioms and laws, random

variables, binomial distribution, Poisson, exponential and normal distributions,

expectations and moments, joint distribution, conditional distribution, conditional

expectations, convergence of random variables, law of large numbers, central

limit theorem, Markov chains.

4 Texts/References

1. W. Feller, W: An Introduction to Probability Theory and its

Applications, Vol.1, John Wiley.

2. G. R. Grimmett and D. R. Stirzaker: Probability and Random Processes,

Oxford Science Publications.

3. Biggs, N. L., Discrete Mathematics, Oxford Science Publications, 1989.

4. Invitation to Discrete Mathematics, Jiří Matoušek, Jaroslav Nešetřil,

Oxford University Press.

Computer Science Engineering

 The following Table shows the electives related to CSE discipline.

Course Code Course L-T-P-C

CS 402 Distributed Systems 3-0-0-6

CS 403 Graph Theory and Combinatorics 3-0-0-6

CS 410 Parallel Computing 3-0-0-6

CS 421 Logic for Computer Science 3-0-0-6

CS 426 Introduction to Blockchains 3-0-0-6

CS 427 Mathematics for Data Science 3-0-0-6

CS 438 Natural Language Processing 3-0-0-6

CS 439 Introduction to Sanskrit Computational Linguistics 3-0-0-6

CS 601 Software Development for Scientific Computing 3-0-0-6

CS 603 Approximation algorithms 3-0-0-6

CS 604 Parameterized Algorithms and Complexity 3-0-0-6

CS 606 Advanced Topics in Embedded Computing 3-0-0-6

CS 607 Advanced Computer Networks 3-0-0-6

CS 608 FPGA for communication networks prototyping 3-0-0-6

CS 609 Software Defined Networking and Network Function Virtualization 3-0-0-6

CS 610 Advanced Distributed Systems 3-0-0-6

CS 612 Statistical Pattern Recognition Laboratory 0-0-3-3

CS 616 Statistical Pattern Recognition 3-0-0-6

CS 621 Logic and Applications 3-0-0-6

CS 622 Special Topics in Automata and Logics 3-0-0-6

CS 624 Compilers - Principles and Implementation 3-0-0-6

CS 810 Advanced Computer Architecture 3-0-3-9

EE 606 Pattern Recognition and Machine learning (PRML) 3-0-0-6

EE 612 Pattern Recognition and Machine learning (PRML) Laboratory 0-0-3-3

EE 620 Neural networks and deep learning (NNDL) 3-0-0-6

EE 611 Neural networks and deep learning (NNDL) Laboratory 0-0-3-3

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Software Development for Scientific Computing

(3-0-0-6)

2
Pre-requisite

courses(s) Exposure to Data Structures and Algorithms, C / C++ / Java / Matlab

3 Course content

Algorithmic Patterns in Scientific Computing: dense and sparse linear algebra,

structured and unstructured grid methods, particle methods (N-body, Particle-

Particle, Particle-in-cell, Particle-in-a- mesh), Fast Fourier Transforms,

Implementing PDEs, C++ standard template library (STL), Introduction to

debugging using GDB, GMake, Doxygen, Version Control System, Profiling

and Optimization, asymptotic analysis and algorithmic complexity. Mixed-

language programming using C, Fortran, Matlab, and Python, Performance

analysis and high-performance code, Data locality and auto tuning, Introduction

to the parallel programming world.

4 Texts/References

• Stroustrup C++ Language Reference (https://www.stroustrup.com/4th.html)

• Suely Oliveira, David Steward: Writing Scientific Software: A Guide

to Good Style. Cambridge University Press, 2006

• Web references to GNU Make, GDB, Git, GProf, Gcov.

• Code Complete: A Practical Handbook of Software Construction

• https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006 183.html

http://www.stroustrup.com/4th.html)
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Approximation algorithms

(3-0-0-6)

2
Pre-requisite

courses(s) Data Structures and Algorithms (CS201)

3 Course content
 Introduction, approximation schemes, design, and analysis of approximation

algorithms - combinatorial algorithms, linear programming-based algorithms.

Hardness of approximation.

4 Texts/References

 Textbook:

• Approximation algorithms. Vazirani, Vijay V. Berlin: springer, 2001.

 Reference:

• The design of approximation algorithms. Williamson, David P., and David

B. Shmoys. Cambridge university press, 2011.

Computer Science Engineering

Computer Science Engineering

1
Title of thecourse

 (L-T-P-C)

Topics in Parameterized Algorithms and Complexity

(3-0-0-6)

2
Pre-requisite

courses(s) Data Structures and Algorithms, Design and Analysis of Algorithms

3 Course content

Introduction. Kernelization, Bounded Search Trees, Iterative Compression,

Treewidth, Advanced kernelization algorithms. Lower bounds: Fixed-parameter

intractability, lower bounds based on ETH, lower bounds for kernelization.

Parameterized Algorithms, Kernelization, and Complexity of Graph Modification

Problems

4 Texts/References

 Textbook:

• Parameterized Algorithms, Marek Cygan, Fedor V. Fomin, Lukasz

kowalki. Daniel Lokshtanov, Daniel Mark, Marcin Pilipaczuk, Michal

Pilipczuk, and Saket Sourabh. Springer. 2015

 Reference:

• Parameterized Complexity, R. G. Downey, and M. R. Fellows. Springer

Science and Business Media. 2012

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Advanced topics in Embedded Computing

(3-0-0-6)

2
Pre-requisite

courses(s) CS 301

3 Course content

Introduction to systems software in embedded platforms Boot loader Embedded

Linux kernel (Processes, Threads, Interrupts)

Device Drivers Scheduling Policies (including Real Time)

Memory Management Optimizations (Data level and Memory level) Embedded

Systems Security Introduction to Embedded GPUs and Accelerators Embedded

Heterogenous Programming with Open CLApplication Case Study on

Embedded Platforms – eg. Neural Network inferencing on Embedded Platforms,

Advanced Driver Assistance Systems

4 Texts/References

• Building Embedded Linux Systems, 2nd Edition by Gilad Ben-Yossef,

Jon Masters, Karim Yaghmour, Philippe Gerum, O'Reilly Media, Inc.

2008

• Linux Device Drivers, Third Edition by Jonathan Corbet, Alessandro

Rubini, Greg Kroah-Hartman, O'Reilly Media, Inc. 2005

• Embedded Systems: ARM Programming and Optimization by Jason D

Bakos, Elsevier, 2015

• Learning Computer Architecture with Raspberry Pi by Eben Upton, Jeff

Duntemann, Ralph Roberts, Tim Mamtora, Ben Everard, Wiley

Publications, 2016

• Real Time Systems by Jane S. Liu, 1 edition, Prentice Hall; 2000

• Practical Embedded Security: Building Secure Resource-Constrained

Systems by Timothy Stapko, Elsevier, 2011

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Advanced Computer Networks

(3-0-0-6)

2
Pre-requisite

courses(s)

3 Course content

1. Circuit, Packet and Virtual Circuit Switching, MPLS

2. Switch Architectures, Buffering Strategies, Input and Output Queuing, IP

Buffer Sizing

3. Quality of Service and Scheduling Algorithms

4. IP Address Lookup and IP Packet Classification algorithms

5. Software Defined Networking

6. Next Generation Network Architectures, Network Provisioning and

Design, and “Green” (Energy- Efficient) Networking

7. Data Driven Networking

8. Wireless Networks - manets, Sensor Networks, Cellular Networks,

Personal Area Networks

9. Content Based Delivery Networks - Principles of data dissemination,

aggregation and caching that are applied to sensor networks, Internet of

Things, and other content-based paradigms. Students will survey recent

research publications on opportunistic networks and next generation

content-based networking ideas.

10. Delay tolerant networks.

11. Network security - authentication, access control, privacy preservation,

intrusion detection and prevention.

12. Performance analysis of new Networking ideas using simulation (such

as Network Simulator (ns3), GENI testbed, Simulink, Open LTE and

Open C-RAN frameworks)

4 Texts/References

 Textbook:

Computer Networks: A Systems Approach, Larry Peterson, and Bruce

Davie, 2011. Performance Evaluation of Computer Systems, by Raj

Jain, Wiley, 1991. Computer Networking, Kurose and Ross, Addison-

Wesley, 2012.

 Reference:

1. An Engineering Approach to Computer Networking by S. Keshav, 1997,

Addison-Wesley Professional Series.

2. Network Routing, by Deepankar Medhi and Karthikeyan Ramasamy,

Morgan Kaufmann, 2007.

3. SDN: Software Defined Networks, by Thomas D. Nadeau, Ken Gray,

O’Reilly Media, 2013.

4. High Performance Switches and Routers, By H. Jonathan Chao and Bin

Liu, Wiley, 2007.

 Network Algorithmics, by George Varghese, Morgan Kaufmann, 2005

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

FPGA for communication networks prototyping.

(3-0-0-6)

2
Pre-requisite

courses(s) EE 224 Digital System Exposure on Computer Network

3 Course content

History and evaluation of FPGAs; FPGA architecture; Introduction to Quartus

Prime (vendors and design tools; vendors and programmable logic); Exploiting

Simulation tools (e.g., ModelSim); Exploiting FPGAs for multi-domain

technologies; Introduction to radio access networks-fronthaul (e.g., common

public radio interface); optical network; metro and core networks; Cross-layer

design; The role of FPGA in the specified network segments and use case

scenarios; In and Out; Clocks and Registers; State Machines; Modular Design;

Memories Managing Clocks; I/O Flavors; Exploiting Qsys and Nios II tools

4 Texts/References

1. C. Maxfield, “The Design Warrior's Guide to FPGAs: Devices, Tools

and Flows,” Jun. 2004, eISBN 9780080477138

2. FPGAs For Dummies, 2nd Intel Special Edition. Published by. John

Wiley & Sons, Inc

3. William J. Dally, R. Curtis Harting, “Digital Design: A Systems

Approach 1st Edition”, Cambridge University Press, September 2012,

ISBN 9780521199506

4. Verilog by Example: A Concise Introduction for FPGA Design, Blaine

C. Readler

5. Course materials: Slides; Notes; Tutorials from Altera website

https://www.altera.com/support/training/university/materials

-tutorials.html

6. R. Ramaswami, K. Sivarajan, G. Sasaki; “Optical Networks: A Practical

Perspective,” 3rd Ed., Morgan Kaufmann, ISBN: 9780123740922

http://www.altera.com/support/training/university/materials
http://www.altera.com/support/training/university/materials

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Software Defined Networking (SDN) and Network Function

Virtualization (NFV)

(3-0-0-6)

2
Pre-requisite

courses(s) Exposure to Computer Networks

3 Course content

History and evolution of SDN; SDN Architecture (Application, Control,

Infrastructure Layer); SDN Interfaces (East/West/North/South-

bound interfaces); SDN Security; SDN routing; SDN standards; SDN

Controllers; Network Operating Systems and Languages; OpenFlow; Software

Switches (e.g. OpenVSwitch); SDN Simulation/Emulation Platforms

(e.g. Mininet); Federated SDN networks; SDN Applications and Use Cases;

Programming assignment/project.

Need for NFV; NFV and SDN Relationship; Virtual Network Functions; Service

Function Chaining; NFV Specifications; NFV Architecture; NFV Use Cases;

NFV Management and orchestration (MANO); Open-source NFV; Hands-on

exercises based on OpenStack/Docker.

4 Texts/References

● Software Defined Networks: A Comprehensive Approach by Paul

Goransson and Chuck Black, Morgan Kaufmann Publications, 2014

● SDN – Software Defined Networks by Thomas D. Nadeau & Ken Gray,

O'Reilly, 2013

● Software Defined Networking with OpenFlow, By Siamak Azodolmolky,

Packt Publishing, 2013

● Gray, Ken, and Thomas D. Nadeau. Network function virtualization.

Morgan Kaufmann, 2016.

● Zhang Ying. Network Function Virtualization: Concepts and

Applicability in 5G Networks. John Wiley & Sons, 2018.

● Foundations of modern networking- SDN, NFV, QoE, IoT, and Cloud,

William Stallings

● James Kurose and Keith Ross, "Computer Networking, A Top-Down

Approach"

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Advanced Distributed Systems

(3-0-0-6)

2
Pre-requisite

courses(s)
 Operating Systems, Data Structures and Algorithms, Programming in C++

3 Course content

Synchronization, Global Snapshot and Distributed Mutual Exclusion, Consensus

& Agreement, Checkpointing & Rollback Recovery, Deadlock Detection,

Termination Detection, Message Ordering & Group Communication, Fault

Tolerance and Self- Stabilization, Peer to Peer Systems

Mining Data Streams in a distributed system: filtering data streams, queries on

streams, pattern detection

Key-Value Storage: Cassandra, HBase

Virtualization and Cloud Computing: virtual machines containers

Message oriented communication, Publish Subscribe Systems (use case Apache Kafka)

Security: Distribution of security mechanisms, access control, and security

management.

4 Texts/References

1. Distributed Computing: Principles, Algorithms, and Systems- Ajay D.

Kshemkalyani and Mukesh Singhal

2. Mining Massive data sets- Jure Leskovec, Anand Rajaraman, Jeff Ullman

3. Distributed Algorithms – An Intuitive Approach (The MIT Press) by Wan

Fokkink

4. Distributed Algorithms-Nancy Lynch

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Statistical Pattern Recognition Laboratory

(0-0-3-3)

2
Pre-requisite

courses(s)
Currently taking statistical pattern recognition theory course

3 Course content
The lab will closely follow the theory course. The idea is to have the students

implement the basic algorithms on different topics studied in the statistical

pattern recognition theory course.

4 Texts/References

1. R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, John Wiley,

2001.

2. C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Statistical Pattern Recognition

(3-0-0-6)

2
Pre-requisite

courses(s) Multivariate Calculus and Linear Algebra, Probability, Programming

3 Course content

Ayesian Decision Making and Bayes Classifier, Parametric And Non-

Parametric Estimation Of Densities, General Linear Models, Discriminative

Learning Based Models, Dimensionality Reduction Techniques, Empirical And

Structural Risk Minimization, Ensemble Methods - Bagging, Boosting, Pattern

Clustering, Graphical Models, Statistical Learning Theory

4 Texts/References
1. R O Duda, P E Hart and D G Stork, Pattern Classification, John Wiley, 2001.

2. C.M. Bishop, Pattern Recognition and Machine Learning, Springer,2006

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Logic and Applications

(3-0-0-6)

2
Pre-requisite

courses(s) Discrete Mathematics, Theory of computation

3 Course content

Module 1: Propositional Logic: Natural deduction, semantics, soundness,

completeness, compactness, normal forms, Horn clauses and satisfiability.

Module 2: Predicate Logic: Natural deduction, resolution, undecidability,

expressiveness.

Module 3: Some decidable fragments of first-order logic and their decision

procedures: propositional logic, equality with uninterpreted functions, linear

arithmetic, Presburger logic, bit vectors, arrays, pointer logic.

Module 4: SAT and SMT solvers: theory and practice: Decision procedures for

combinations of first-order theories: Nelson-Oppen, Shostak, Satisfiability

Modulo Theories (SMT) Combination with SAT solvers: eager, lazy approaches.

Student is required to do a small project using a SAT/SMT solver.

4 Texts/References

1. Logic in Computer Science, Michael Huth and Mark Ryan, Cambridge

University Press.

2. Mathematical Logic for Computer science, Mordechai Ben-Ari, Springer.

3. Logic for Computer Scientists, Uwe Schoning, Birkhauser.

4. SAT/SMT by example, Dennis Yurichev.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Special Topics in Automata and Logics

(3-0-0-6)

2
Pre-requisite

courses(s) Discrete Mathematics, Theory of computation, Logic, and its applications.

3 Course content

This course aims at giving an introduction to the theory of automata working on

infinite words and infinite trees and connections thereof to logic. These

automata and related logics are of fundamental importance in the areas of

formal specification and verification of reactive systems. If time permits, we

will also discuss some basic results in finite model theory. Below is a list of

topics which will be discussed on this course. Automata on finite words -

equivalence of MSO and automata; Automata on infinite words â€“ different

acceptance conditions; Closure properties and equivalence of different

acceptance conditions and related translations Determinization and

complementation results; Equivalence of automata and MSO and decidability of

MSO; Automata on infinite trees - different acceptance conditions; Closure

properties and comparison of expressive power of different acceptance

conditions and related translations Complementation result for tree automata

via parity games; Equivalence of MSO and tree automata; Decidability of MSO

over tress; Parity games and determinacy; Ehrenfeucht-Frasse games in logics

and applications

4 Texts/References

1. Wolfgang Thomas: Automata on infinite objects, Handbook of

theoretical computer science (vol B): formal methods and semantics,

Elsevier.

2. Wolfgang Thomas: Languages, automata, and logic, Handbook of formal

languages, vol. 3: beyond words, Springer-Verlag.

3. Dominique Perrin, Jean-Eric Pin: Infinite words, Elsevier

4. Erich Gradel, Wolfgang Thomas, Thomas Wilke: Automata, logics, and

infinite games: a guide to current research. LNCS, Springer-Verlag.

5. Leonid Libkin: Elements of finite model theory, Springer-Verlag.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Compilers - Principles and Implementation

(3-0-0-6)

2
Pre-requisite

courses(s)

 Exposure to Data Structures and Algorithms, Computer Architecture, Automata Theory

3 Course content

Structure of a compiler, the compiled and interpreted execution models. Lexical

analysis and parsing using lex and yacc. Scope and visibility analysis. Data layout

and lifetime management of data. Runtime environment. Dynamic memory

allocation and Garbage collection. Translation of expressions, control structures,

and functions. Code generation and local optimizations, Lattice theory, register

allocation, instruction scheduling, optimizations - dataflow, control flow, reaching

definitions, and liveness analysis, code transformation-tiling, fusion.

4 Texts/References

1. Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007.

2. Andrew Appel: Modern Compiler Implementation in C/ML/Java,

Cambridge University Press, 2004

3. Dick Grune, Henri E. Bal, Cerial J.H. Jacobs, and Koen G. Langendoen:

Modern Compiler Design, John Wiley & Sons, Inc. 2000.

4. Michael L. Scott: Programming Language Pragmatics, Morgan

Kaufman Publishers, 2006. 5. Fisher and LeBlanc: Crafting a Compiler

in C.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Advanced Computer Architecture

(3-0-3-9)

2
Pre-requisite

courses(s) Computer Architecture

3 Course content

Instruction-level parallelism: out-of-order pipelines; Thread-level parallelism:

multi-core, multi-threading, memory hierarchies, coherence and consistency, on-

chip networks; Data-level parallelism: vector processing, GPUs; optimizations

and enhancements: modern branch predictors, instruction, and data prefetchers,

value speculation.

4 Texts/References

 Textbook:

1. Computer Architecture: A Quantitative Approach, David Patterson, and

John L. Hennesy, Elsevier, Sixth edition. 2017

 Reference:

1. Processor Microarchitecture: An Implementation Perspective. Antonio

Gonzalez, Fernando Latorre, and Grigorios Magklis. Synthesis Lectures

on Computer Architecture. 2011. (available online)

2. A Primer on Memory Consistency and Cache Coherence, Daniel Sorin,

Mark Hill, and David Wood, Morgan, and Claypool Publishers, 2011

3. On-chip Networks: Second edition, Natalie Enright Jerger, Tushar

Krishna, Li-Shiuan Peh, Morgan and Claypool Publishers, 2017

4. Parallel Computer Architecture, David Culler, Jaswinder Pal Singh,

Anoop Gupta, Elsevier, 1998

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Pattern Recognition and Machine Learning (PRML)

(3-0-0-6)

2
Pre-requisite

courses(s) Exposure to basic concepts in calculus and probability

3 Course content

Overview of Probability Theory, Linear Algebra, Convex Optimization.

Introduction: History of pattern recognition & machine learning, distinction in

focus of pattern recognition and machine learning.

Regression: Linear Regression, Multivariate Regression, Logistic Regression.

Clustering: Partitional Clustering, Hierarchical Clustering, Birch Algorithm

CURE Algorithm, Density-based Clustering

PCA and LDA: Principal Component Analysis, Linear Discriminant Analysis.

Kernel methods: Support vector machine

Graphical Models: Gaussian mixture models and hidden Markov models

Introduction to Bayesian Approach: Bayesian classification, Bayesian

Learning, Bayes Optimal Classifier, Naive Bayes Classifier and Bayesian

Network.

4 Texts/References

1. C. Bishop, “Pattern Recognition and Machine Learning,” Springer, 2006.

2. S. Theodoridis and K. Koutroumbas, “Pattern Recognition” Second

 Edn, Elsivier, 2003

3. B. Yegnanarayana, “Artificial Neural Networks,” PHI, 1999.

4. Simon Hayking, “Neural Networks and Learning

Machines,” Pearson, 1999.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Pattern Recognition and Machine Learning (PRML) Laboratory

(0-0-3-3)

2
Pre-requisite

courses(s) Currently taking or already taken PRML theory course

3 Course content
The lab will closely follow the theory course. The idea is to have the students

implement the basic algorithms on different topics studied in the PRML theory

course.

4 Texts/References

1. C. Bishop, “Pattern Recognition and Machine Learning,” Springer, 2006.

2. S. Theodoridis and K. Koutroumbas, “Pattern Recognition” Second

Edn, Elsivier, 2003

3. B. Yegnanarayana, “Artificial Neural Networks,” PHI, 1999.

4. Simon Hayking, “Neural Networks and Learning Machines,”

Pearson, 1999.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Neural Networks and Deep Learning (NNDL)

(3-0-0-6)

2
Pre-requisite

courses(s)

Exposure to basic concepts in calculus and probability

3 Course content

Introduction to Artificial Neural Networks (ANN) and Deep Learning (DL):

Motivation, basics of ANN, overview of PRML, evolution deep learning and

different architectures. Applications of ANN vs DL.

Feedforward Neural Networks (FFNN): Working principle, basic architecture,

analysis of FFNN for different PRML tasks.

Feedback Neural Networks (FBNN): Working principle, basic architecture,

Boltzmann machine, analysis of FFNN for different PRML tasks.

Competitive learning Neural Networks (CLNN): Working principle, basic

architecture, analysis of CLNN for different PRML tasks.

Deep Learning (DL) Architectures: Deep FFNN, Convolutional neural networks

(CNN), Recurrent neural network (RNN), Longterm shortterm memory (LSTM),

Generative adversarial network (GAN), DL architectures with attention

mechanism. Some recent DL architectures.

Applications of DL: speech processing, image processing and other tasks.

4 Texts/References

1. B. Yegnanarayana, Artificial Neural Networks, PHI, 1999.

2. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning,

MIT Press, 2016.

Computer Science Engineering

1
Title of the course

 (L-T-P-C)

Neural Networks and Deep Learning (NNDL) Laboratory

(0-0-3-3)

2
Pre-requisite

courses(s) Currently taking or already taken NNDL theory course

3 Course content
The lab will closely follow the theory course. The idea is to have the

students implement the basic algorithms on different topics studied in the NNDL

theory course.

4 Texts/References

1. B. Yegnanarayana, Artificial Neural Networks, PHI, 1999.

2. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning,

MIT Press, 2016.

