SEMESTER - V									
Sl. No.	Course Code	Course Name	L	Т	Р	С			
1	PH 201	Electrodynamics	2	1	0	6			
2	EE 202	Introduction to Analog Circuits (Post midsem)	3	0	0	3			
3	EE 320	Fundamental of Digital Signal Processing	2	0	2	6			
4	EE 212	Devices and Circuits Laboratory	0	0	3	3			
5	ME 203	Fluid Mechanics	2	1	0	6			
6	-	Institute Elective-1/RND Project-1	2	1	0	6			
	Fifth Semester Total Credits 30								
	Third Year Total Credits					64			

1	Title of the course	Electrodynamics	
1	(L-T-P-C)	(2-1-0-6)	
2	Pre-requisite courses(s)	Successful completion of PH102	
3	Course content	 Review of electrostatics and magnetostatics. Electrodynamics: Differential and integral forms of Maxwell's equations, Scalar and vector potentials, gauge transformations, Coulomb and Lorentz Gauge; Maxwell's equations in terms of potentials. Energy and momentum in electrodynamics. Electromagnetic waves: Electromagnetic waves in non-conducting media: Monochromatic plane waves in vacuum, propagation through linear media; Boundary conditions; Reflection and transmission at interfaces. Fresnel's laws; Electromagnetic waves in conductors: Modified wave equation, monochromatic plane waves in conductors: Modified wave equation, monochromatic plane waves in conductors and plasmas. Guided waves. Retarded potentials, Electric dipole radiation, magnetic dipole radiation. Radiation from a point charge: Lienard-Wiechart potentials, fields of a point charge in motion, power radiated by a point charge. Electrodynamics and Relativity: Review of special theory of relativity, Lorentz transformations, Minkowski four vectors, energy-momentum four vector, covariant formulation of mechanics; Transformation of electric and magnetic fields under Lorentz transformations, field tensor, invariants of electromagnetic field, Covariant formulation of electrodynamics, Lorentz force on a relativistic charge particle. Waveguides, Resonant Cavities and Optical Fibers, Basics of Antennas. 	
4	Texts/References	 D. J. Griffith: Introduction to Electrodynamics, 4th edition, Pearson, 2015. J.D. Jackson: Classical Electrodynamics, Wiley student edition, 3rd edition, 2007. Modern Electrodynamics, Andrew Zangwill, Cambridge University Press, 2012. Foundations of Electromagnetic Theory, J. R. Reitz, F. J. Milford, and R. W. Christy, Addison-Wesley, 4th edition, 2008. W K H Panofsky and M Philips: Classical Electricity and Magnetism Addison Wesley, 2nd edition, 1962. W Greiner: Classical Electrodynamics, Springer, 1998. Hayt, William H., Jr., and John A. Buck, "Engineering Electromagnetics", 7th ed. McGraw-Hill, 2006. M.A. Heald and J.B. Marion, Classical Electromagnetic Radiation, Saunders, 1983. 	

1	Title of the course	Introduction to Analog Circuits	
	(L-T-P-C)	(3-0-0-3)	
2	Pre-requisite courses(s)	Network theory, Electronic Devices	
3	Course content	 Part 1: Linear circuits Introduction to feedback control – Integral control and proportional control Linear circuits using Op-amps (amplifiers, arithmetic circuits, filters and oscillators) Part 2: Need for non-linearity for amplification. Single stage amplifiers, frequency response, Current mirror circuits, Differential amplifier. 	
4	Texts/References	 J.V.Wait, L.P.Huelsman and GA Korn, Introduction to Operational Amplifier theory and applications, 2nd edition, McGraw Hill, New York, 1992. J. Millman and A. Grabel, Microelectronics, 2nd edition, McGraw Hill, 1988. Ramakant Gayakwad, Op-amps and Linear Integrated Circuit, 4th edition, Pearson, 2000. P. Horowitz and W. Hill, The Art of Electronics, 2nd edition, Cambridge University Press, 1989. Behzad Razavi, "Fundamentals of Microelectronics," John Wiley, 2013. 	

1	Title of the course	Fluid Mechanics
	(L-T-P-C)	(3-0-0-6)
2	Pre-requisite	Nill
	courses(s)	
3	Course content	Introduction: Scope, definition of fluid as continuum, fluid properties. (2hr)
		Fluid Statics: Pressure at a point, basic equation for pressure field, pressure variation (fluid at rest): standard atmosphere, Measurement of pressure manometer, Hydrostatics force on a plane and curve surface, Buoyancy, flotation and stability, pressure variation in a fluid with rigid body motion linear motion, rigid body rotation(4hr)
		Elementary Fluid Dynamics: Statics, stagnation pressure, Bernoulli Equation assumptions(4hr)
		Fluid Kinematics The velocity filed: Eulerian and Largrangian flow descriptions, steady and deformation,
		Acceleration field: material derivative, unsteady and convective effects.
		Control volume and system representation: Reynolds' Transport Theorem, physical interpretation, steady, unsteady effects, moving control volume, potential function(6Hr) Integral approach Conservation of mass derivation of continuity, fixed, non-deforming control volume, moving non-deforming control volume, deforming control volume.
		Conservation of momentum: linear momentum and moment of momentum equation and their application., comparison of energy equation with Bernoulli's equation(6hr)
		Differential approach: linear motion and angular motion with deformation,
		Conservation of mass: differential form of continuity equation, stream function, Conservation of linear momentum, Inviscid flows, Irrotational flow(6hr)
		Viscous flow: Stress relationships, NS Equations, Simple solutions for viscous flows(4hr) Dimensional analysis Buckingham's II-theorem, Dimensionless groups & their importance (3hr)
		Viscous Flow in Pipes: General characteristics of pipe flow, fully developed laminar and turbulent flow, turbulent shear stress, turbulent velocity profile, Pipe Flow rate measurement. (4hr)
		Boundary layer: Boundary layer characteristics boundary layer structure and thickness on a plate, Blasius boundary layer, momentum integral boundary layer equation for a flat plate(4hr)
4	Texts/References	 Yunus A. Cengel, John M. Cimbala, Fluid Mechanics, Tata McGraw Hill Education,2011 F.M.White Fluid Mechanics, Seventh Edition, Tata McGraw Hill Education,2011, Kundu, Pijush K., and Ira M.Cohen.Fluid Mechanic, Elsevier,2001