SEMESTER - IV						
Sl. No.	Course Code	Course Name	L	Т	Р	С
1	PH 304	Statistical Physics	2	1	0	6
2	PH 312	General Physics Laboratory	0	0	3	3
3	EE 204	Digital Systems	2	1	0	6
4	CS 301	Computer Architecture	2	1	0	6
5	ME 201	Engineering Mechanics	2	1	0	6
6	EE 212	Devices and Circuits Laboratory	0	0	3	3
7	EE 214	Digital Circuits Laboratory	0	0	3	3
8	CS 311	Computer Architecture Laboratory	0	0	3	3
Fourth Semester Total Credits				36		
Total Cumulative Credits after 2nd Year				149		

1	Title of the course	Statistical Physics		
1 (L-T-P-C) (2-1-0-6)		(2-1-0-6)		
2	Pre-requisite courses(s)	None		
3	Course content	 Thermodynamics: Thermal equilibrium, the laws of thermodynamics; temperature, energy, entropy, and other functions of state. Probability Theory: Probability densities, cumulants and correlations; central limit theorem; laws of large numbers. Kinetic Theory: Phase space densities; Liouville's theorem, the Boltzmann equation; transport phenomena. Classical Statistical Mechanics: Postulates; microcanonical, canonical and grand canonical ensembles; Gibb's paradox, non-interacting examples. Maxwell Boltzmann distribution, ideal gas. Quantum Statistical Mechanics: Indistinguishability, Bose-Einstein and Fermi- Dirac distributions and Applications Interacting Systems: Virial and cluster expansions; van der Waals theory; liquid- vapor condensation. Quantization effects in molecular gases; phonons, photons; density matrix formulation. Identical Particles: Degenerate quantum gases; Fermi liquids; Bose condensation; 		
		superfluidity.1. Huang, Kerson. Statistical Mechanics. 2nd ed. Wiley, 1987.		
4	Texts/References	 Baierlein, Thermal Physics (Cambridge University Press, 1999). Pathria, R. K. Statistical Mechanics. Pergamon Press, 1972. Ma, Shang-keng. Statistical Mechanics. Translated by M. K. Fung. World Scientific Publishing Company, 1985. J. K. Bhattacharjee, Statistical Physics: Equilibrium and Non-Equilibrium Aspects, Allied Publishes, 2000 F. Reif, Fundamentals of Statistical and Thermal Physics Statistical Physics: Amit and Verbin, Word Scientific, 1999 		

1	Title of the course	Digital Systems	
1	(L-T-P-C)	(2-1-0-6)	
2	Pre-requisite		
	courses(s)	None	
3	Course content	 Introduction to Digital Systems Number systems and Logic: Number Systems, Different Codes, Boolean logic, basic gates, truth tables Introduction to Logic families: TTL, CMOS etc. Boolean Algebra: Laws of Boolean Algebra, logic minimization using K maps Combinational Logic Circuits: Adders, Subtractors, Multipliers, MSI components like Comparators, Decoders, Encoders, MUXs, DEMUXs Sequential circuits: Latches, Flipflops, Analysis of clocked sequential circuits, Registers and Counters (Synchronous and Asynchronous), State Machines Introduction to Hardware Description Languages Array based logic elements: Memory, PLA, PLD, FPGA Special Topics: Asynchronous State machines, Testing and Verification of Digital Systems 	
4	Texts/References	 J. F. Wakerly: Digital Design, Principles and Practices,4th Edition,Pearson Education, 2005 M. Moris Mano; Digital Design, 4th Edition, Pearson,2009 Ronald J. Tocci; Digital System, Principles and Applications, 10th Edition, Pearson, 2009 H. Taub and D. Schilling; Digital Integrated Electronics, McGraw Hill, 1977 Charles H Roth; Digital Systems Design using VHDL, Thomson Learning, 1998. 	

1	Title of the course	Computer Architecture	
	(L-T-P-C)	(3-0-0-6)	
2	Pre-requisite		
	courses(s)		
3	Course content	The Language of Bits, Assembly Language, LogicGates, Registers, and Memories, Processor Design, Principles of Pipelining, The Memory System, Multiprocessor Systems, I/O and Storage Devices. Each concept will be first taught on the basis of the fundamental driving principles. Following this, real world examples (e.g., ARM processors) will be used to emphasize the content.	
4	Texts/References	 Computer Organization and Architecture, by SmrutiRanjan Sarangi, McGraw Higher Ed, 2017. Computer Architecture A Quantitative Approach, Sixth edition, by David Patterson and John L. Hennesy,Morgan Kaufmann, 2017. 	

1		Computer Architecture Laboratory (0-0-3-3)	
2	Pre-requisite courses(s)		
3	Course content	The lab will closely follow the theory course. The idea isto have the students develop a software model of a simple processor, capturing both functionality and timing aspects. They will implement modules as the concepts aretaught in class.	
4	Texts/References	Nil	