BSMS-Mathematics

Semester VII								
S.No	Course Code	Course Name	L	T	P	C		
1	MA 404	Numerical Analysis	2	1	0	6		
2		Program Elective-IV				6		
3		Program Elective-V				3		
4		Institute Elective – I	2	1	0	6		
5		HSS Elective-II	3	0	0	6		
		Total Credits				27		

BSMS-Mathematics

1	Title of the course	Numerical Analysis	
1	(L-T-P-C)	(2-1-0-6)	
2	Pre-requisite	Calculus 1 and 2, Linear Algebra, DE 1, Ordinary	
	courses(s)	Differential Equations or Instructor's consent	
3	Course content	Linear Systems of Equation, LU decomposition, Classical iterative techniques and ill conditioned systems Matrix eigenvalue problems, Power iteration, Jacobi and QR methods Approximation theory, interpolation (Lagrange, Hermite and piecewise interpolation) and best approximations in inner product spaces Nonlinear Equations and their iterative solution Numerical Integration, interpolatory quadratures, Gauss quadrature, quadrature of periodic functions and Romberg integration Finite Difference methods, convergence, stability and consistency, Lax equivalence theorem	
4	Texts/References	Rainer Kress, Numerical Analysis, 1 st Edition, Springer Verlag New York, 1998 J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3 rd Edition, Springer-Verlag New York, 2002 K. Atkinson and Weimin Han, Theoretical Numerical Analysis, A functional Analysis framework, 3 rd Edition, Springer-Verlag New York, 2001 P. Deuflhard and A Hohmann, Numerical Analysis in modern scientific computing, An introduction, 2 nd Edition, Springer-Verlag New York, 2003	