
SANNA: Secure Acceleration of Neural Network
Applications

Akash Poptani
IIT Dharwad

Dharwad, India
200020005@iitdh.ac.in

Abhishek Mittal
IIT Dharwad

Dharwad, India
200030003@iitdh.ac.in

Rishit Saiya
IIT Dharwad

Dharwad, India
180010027@iitdh.ac.in

Rajshekar Kalayappan
IIT Dharwad

Dharwad, India
rajshekar.k@iitdh.ac.in

Sandeep Chandran
IIT Palakkad

Palakkad, India
sandeepchandran@iitpkd.ac.in

Abstract—The threat of Hardware Trojans looms large on
safety-critical systems. A Design-For-Trust technique to mitigate
this threat without significant loss in performance is to implement
these systems as a Heterogeneous Secure System – HSS. An
HSS is built using an array of trustworthy home-grown cores
and untrusted but fast third-party cores in a way that prevents
unverified results from third-party cores reaching IO peripherals
and devices. In this work, we propose to use the unverified results
to initiate a speculative execution of subsequent layers of a Neural
Network (NN) application on trustworthy cores. Our experiments
on six popular NN applications show that on an average, the
secure execution on an HSS is slower than the corresponding
untrusted execution by up to 6.26% as compared to the slowdown
of 80.89% experienced by a conventional trustworthy system.

Index Terms—Hardware Trojans, Design-for-Trust, Neural
Networks, Assisted Parallelization

I. INTRODUCTION

Hardware Trojans (HTs) are deliberate modifications to a
circuit made with malicious intent. These modifications can
often have disastrous system-level consequences when they
are deployed in-field and activated. The US took cognizance
of the threat posed by HTs to its critical installations such as
military equipment and other sensitive strategic infrastructure
quite early and launched the Trusted Foundry Program (TFP)
(in 2004). The goal of the TFP was to secure the supply chain
of the electronic components used in its critical infrastructure
by sourcing them only from trusted sources only. However,
there is a recent push within the US to move away from the
TFP into Zero-Trust Environments due to the economic infea-
sibility of maintaining state-of-the-art manufacturing facilities
exclusively for military systems [1].

We account for these developments and assume the exis-
tence of two kinds of electronic components: (i) trustworthy
but slow Home Grown Cores (HGCs), and (ii) untrusted but
fast Third-party Cores (3PCs). Further, this work advocates
constructing safety-critical systems using a combination of
HGCs and 3PCs by adhering to the principle of Sphere of
Containment [2]. This design principle prevents the mali-
cious behavior triggered by an HT from reaching the IO
peripherals by requiring the HGCs to verify every access to
the peripherals. We call such systems Heterogeneous Secure
Systems (HSS). The implementation of an HSS is a Design
for Trust (DFT) technique to counter HTs and can mitigate
attacks from the Model D HTs [3]. It can handle attacks

such as (i) changed functionality, (ii) leakage of sensitive
information (through visible IO peripherals), and (iii) degraded
or unreliable performance (in non-real-time systems). In this
work, we assume that the 3PCs are fabricated separately from
the HGCs, and hence each is a complete standalone system
by itself that interact over Ethernet. However, this work is
directly applicable to untrusted third-party IPs (3PIP) too that
are integrated into a system at design time and fabricated in
a trusted foundry together with HGCs.

The primary challenge in designing an HSS is to bridge the
performance gap between the 3PC and the HGC. We achieve
this by using Assisted Parallelism, which is in turn inspired by
the domain of Assisted Execution. Unlike an earlier proposal
that employed Assisted Parallelism to secure the execution of
task-graph based applications [2], this work focuses on Neural-
Network (NN) applications and do not require any changes to
its source code.

Figure 1(a) shows the execution of a 3-layer NN application
on an HSS when an HT is not triggered. HGC1 acts as the
master and schedules the execution of the first layer on HGC2

and 3PC1. Since the computation on the 3PC is faster, the
results of layer 1 from 3PC1 are available at the master before
the same from HGC2. The results from 3PC1 are untrusted
because they have not been verified by the master at this point.
These unverified results are forwarded to HGC3 to start the
computation of layer 2 speculatively. When layer 1 results
from HGC2 are available, the master compares them with
the results received from 3PC1 earlier. If the results match,
the ongoing computation (speculative until now) of layer 2
on HGC3 is allowed to continue. Such overlapped execution
of layers 1 and 2 on HGC2 and HGC3 using the unverified
results from 3PC1 makes the execution of the NN application
faster on an HSS as compared to a system constructed using
HGCs alone. This increased performance comes at the cost of
increased hardware overhead (additional HGCs and 3PCs).

Figure 1(b) illustrates a scenario where the results of layer
2 computed by 3PC1 and HGC3 do not match because of an
HT activation in the 3PC. In this case, the computation of layer
3 on HGC2 that was speculatively initiated is aborted. The
computation of layer 3 is restarted again on HGC2 using the
results from HGC3. In a scenario where the computation of
several subsequent layers has started using unverified results,
all the speculative executions are aborted and intermediate re-

Legend: Verified results Unverified results Trusted zone Untrusted zone

3PC1

HGC1

HGC2

HGC3

Layer1

Layer1

Layer2

Layer2 Layer3

V

Layer3

Sphere of
Containment

(a)

V V

3PC1

HGC1

HGC2

HGC3

Layer1

Layer1

Layer2

Layer2 Layer3

V

Layer3

Sphere of
Containment

(b)

V

Layer3

Fig. 1: Secure execution of a NN application on HSS: (a) when HT is not triggered, and (b) when HT is triggered in layer 2

sults discarded. The computations are restarted again on HGCs
using the results from other HGCs. This ensures that unverified
results do not reach the IO peripherals while enabling the
overlapped execution of layers.

The performance of a NN application on such a system is
maximized when the duration of computations on the different
HGCs is similar and the volume of results transferred between
the cores is minimal. The non-homogeneity in the layers in
terms of computations performed as well as in the size of
the results of each layer makes it challenging to achieve high
performance.

In this work, we propose an Integer Linear Program (ILP)
based technique to schedule the layers of an NN application
on the HSS such that the overall runtime of the application
is minimized without compromising the security of the sys-
tem. Our experiments indicate that doing so helps the HSS
outperform an HGC-only system by upto 5.4× across six
popular NN applications. The ILP technique, however, exhibits
high latency, with the optimal solution remaining unfound in
many cases even after ten hours. To alleviate this problem,
we propose 4 alternate techniques to identify a good (near-
optimal) schedule of execution on the available HGCs. These
techniques run in a few milliseconds, and the best among them
provides solutions that are < 0.23% slower on average than
the optimal ILP solution.

II. RELATED WORK

Hardware trojan countermeasures: The design of HTs
and their countermeasures has been under active investigation
for over a decade [4]. A popular class of countermeasures
that comes under the ambit of DFT is the building of trusted
systems using untrusted components. A technique under this
approach is to execute different software implementations of
the same functionality on untrusted hardware [5]. Another
technique is to procure hardware implementations of desired
functionality from different vendors [6]. These approaches are
based on the expectation that two untrusted implementations
(hardware or software) will always misbehave differently. Such
an assumption may be risky in some contexts. To the best
of our knowledge, design techniques that rely on the sphere
of containment are the only ones that do not make this
assumption.

Assisted Execution: Prior works have used assisted exe-
cution in three ways. The first way is to execute a trimmed
version of the application and pass on beneficial hints to

the original application to improve its performance [7]. The
second way is used in Fault-tolerant systems extensively. Here
an execution on a high-performance core is checked by a
redundant execution on a simpler core aided by hints from
the former [8]. The third way, SecCheck [2], was the first
work to employ the idea of assisted execution in the realm
of security to enable low-performance trustworthy cores to
verify the functioning of high-performance but untrusted cores.
However, SecCheck requires the application to be specified
as a task graph so that the task-level parallelism can be
easily exploited. In contrast, this proposal automatically infers
opportunities for assisted parallelism by exploiting the nature
of NN applications. In addition to this, we have proposed
several heuristics that compute a near-optimal schedule of
an NN application on an HSS. Further, we have evaluated
our proposal on actual systems unlike the analytical methods
adopted by SecCheck.

III. ASSISTED PARALLELIZATION OF NEURAL NETWORKS

The straightforward approach to parallelizing a NN’s exe-
cution is to get each layer of the NN to execute on a different
HGC. This is not always feasible because of the prohibitively
high hardware overhead. In a HSS where the number of HGCs
is less than the number of layer, scheduling the layers on to
HGCs is non-trivial because of the asymmetry in the duration
of execution of layers as well as the variations in volume of
communication between the layers.

Table I lists the different symbols used in the description of
the different proposed scheduling techniques.

A. Optimal HSS scheduling technique

We obtain the optimal schedule by formulating an ILP that
takes into consideration the execution times of each layer as
well as the volume of data transfers required.

The objective function is:

minimize Ttotal (1)

The constraints of the ILP are:

✠ Every layer must be executed exactly once.

∀l∈L :
∑

h∈HGCs

El,h = 1 (2)

TABLE I: Symbols used in the description of techniques to
schedule the application on the HSS

Symbol Description
L set of layers in the network
H set of HGCs
THGCi

time taken to execute layer i on HGC
Tbatchi

time taken to execute batch i on HGC
T3PCi

time taken to execute layer i on 3PC
Ttri time to transfer layer i result from 3PC to HGC
Treadyi

time taken by 3PC to execute layers 0 to (i− 1)
Ei,j layer i executed on HGC j
Tstarti time when layer i starts HGC execution
Ttotal total time required to securely execute the NN

✠ An HGC must execute a layer only if the layer inputs are
available. If the previous layer has been executed on the same
HGC, then the layer inputs need not be sought from the 3PC.

∀l∈L,h∈H : Tstartl ≥ Treadyl
+ Ttrl−1

× (2− El−1,h − El,h)
(3)

✠ An HGC must execute only one layer at a time.

∀i∈L,j∈L,h∈H,i>j : Tstarti ≥ Tstartj + THGCj

−K × (2− Ei,h − Ej,h) (4)

where K is a large constant.
✠ All layers have to complete execution on HGCs.

∀l∈L : Ttotal ≥ Tstartl + THGCl
(5)

Different instances of the problem were solved using the
GNU Linear Programming Solver (glpsol).

B. Near-optimal HSS scheduling techniques

The near-optimal HSS scheduling schemes discussed below
are aimed at reducing the time taken to obtain a schedule of
the application on the HGCs without compromising too much
on the overall performance of the system.

1) ApproxBatch: In this scheme, we logically coalesce
contiguous layer into batches and execute each batch on a
single core with the intention of balancing the duration of
computations as well reducing the amount of data transferred
between cores. It is important to note that the batching of
layers has no implication on the security guarantees provided
because the system continues to adhere to the principle of
Sphere of Containment.

ApproxBatch ascertains the batch boundaries by making two
approximations: (i) it considers only the computation time (ii)
it assumes that the throughput of a 3PC is always x times that
of an HGC irrespective of the nature of the layer. Therefore,
x is as follows:

x =

∑|L|
i=0 T3PCi∑|L|
i=0 THGCi

(6)

The ideal number of batches is |H|, and each batch will
be executed on a different HGC. The ideal composition of
the batches must be such that they complete their respective
executions at the same time. For example, the requirement
that batch0 and batch1 must complete at about the same time
implies that the time taken to execute batch0 (Tbatch0) should

be equal to the sum of the time taken for executing batch1

(Tbatch1) and the time taken to get its inputs (from 3PC).
The latter term is the time taken to run batch0 on a 3PC,
which according to equation 6, is approximately x× Tbatch0

.
Constructing the other equations in a similar fashion gives us:

Tbatch0

= Tbatch1
+ x× Tbatch0

=
Tbatch1

1−x

Tbatch0
= Tbatch2

+ x× Tbatch1
+ x× Tbatch0

=
Tbatch2

(1−x)2

...

Tbatch0
=

Tbatch|H|−1

(1−x)|H|−1

(7)
In addition to this, we also know that the time taken to

execute all the batches on the HGCs is equal to the time taken
to execute all layers separately.

|H|−1∑
i=0

Tbatchi
=

|L|−1∑
i=0

THGCi
(8)

Solving the above system of equations gives us the estimates
of the ideal values of the different Tbatchi

’s. We then find
the layer boundaries closest to these values, leading us to the
composition of the batches.

2) GreedyHGC and GreedyECT: The GreedyHGC and the
GreedyECT techniques use a greedy approach to compute
the schedules. The former prioritizes the layers with longer
execution times on HGC (THGCi

) and balances their execution
across HGCs. The latter prioritizes those layers that have
a higher earliest completion time (TEC) (see equation 9).
Here, TEC is defined as the earliest absolute time a layer can
complete its execution, including the time it takes to verify
the results by re-executing it on an HGC.

TECi
=

i−1∑
j=0

T3PCj
+ Ttri−1

+ THGCi
(9)

Algorithm 1 details the working of the greedy approach.
The metric is set to THGC or TEC in Line 1 based on the
heuristic used. The algorithm goes over the layers in the order
of their priority considering one layer at a time. It then finds
the time when the inputs of the layer under consideration will
be available at an HGC (Tavail). Lines 6 to 10 finds an HGC
(j) that is free for the duration of the execution of the layer
and schedules it onto j.

3) TaskStealing: Under this scheme, we use the task-
stealing paradigm to schedule layers on HGCs and is detailed
in Algorithm 2. For each of the HGCs, the time when it will
be free next is maintained. Then, all the layers are considered
one at a time. For each layer (i), the time of when its inputs
will be available at an HGC (Tavail) is computed next. Line 4
identifies the HGC (j) that is either free now, or will become
free first (in future). Lines 5 to 8 schedules the layer i on to
the HGC j.

Algorithm 1 Greedy approach to scheduling tasks on the HSS

1: metric = THGC or TEC

2: s layers = layers in descending order of metric
3: for k ← 0 to |L| − 1 do
4: i = s layers[k]
5: Tavail = Treadyi + Ttri−1

6: find earliest time t such that t ≥ Tavail and an HGC is
free in [t, t+ THGCi

]
7: j = an HGC that is free in [t, t+ THGCi

]
8: Ei,j = 1
9: Tstarti = t

10: set j as occupied in [t, t+ THGCi]
11: end for

Algorithm 2 TaskStealing approach to scheduling tasks on the
HSS

1: HGC nextFreeAt = [0...0]
2: for i← 0 to |L| − 1 do
3: Tavail = Treadyi

+ Ttri−1

4: j = min(HGC nextFreeAt)
5: startT ime = max(Tavail, HGC nextFreeAtj)
6: Ei,j = 1
7: Tstarti = startT ime
8: HGC nextFreeAtj = startT ime+ THGCi

9: end for

IV. SYSTEM DESIGN

We begin by first profiling the NN application’s execution
on the 3PC and the HGC separately to get the timing char-
acteristics of the given NN. We then find the schedule of the
different layers on the HGCs by adopting one of the techniques
listed in Section III.

At runtime, our proposed framework first launches a
master process on one of the HGCs. The task of the master
process is to orchestrate the entire execution of the application
on the HSS under consideration. The master initiates the
execution of the application on the 3PC_slave – a process
on the 3PC – with the given inputs. The master also initiates
the execution of the application on an array of HGCs. A
multitude of HGC_slaves, each on an HGC, work together
to execute the application. The 3PC_slave sends the results
of each layer to the master and the master forwards
the same to the appropriate HGC based on the computed
schedule. The HGC_slave receives the inputs of layer i from
the master and executes the same, and returns the results
to the master. For each layer, the master compares the
results returned by the 3PC_slave and the corresponding
HGC_slave. An HT activation is inferred if the results do
not match, and a suitable reaction strategy such as re-executing
all subsequent layers only on HGCs using the result of the
previous layer available from an HGC_slave is adopted.

TABLE II: Specifications of the Evaluation Platform

Big Core
cores: 4; ISA: ARMv7; Micro-arch: Cortex-A15 (3-issue, out-of-order)
Studied Frequencies: 800 MHz, 1200 MHz, 1600 MHz, 2 GHz

Little Core
cores: 4; ISA: ARMv7; Micro-arch: Cortex-A7 (2-issue, in-order)
Studied Frequencies: 200 MHz, 600 MHz, 1000 MHz, 1.4 GHz
Memory: 2GB OS: Ubuntu 16.04

V. EVALUATION

A. Methodology

We evaluated our proposal using multiple Odroid MC1
Solo boards. Each board consists of 4 “big” high-performance
cores and 4 “little” low-performance cores. Table II shows
the detailed specifications of the cores (and boards). A big
core on one of the boards was designated as the 3PC, while
the little cores on the other boards function as HGCs. Also,
the big core operates at a frequency higher than that of the
little cores. Standard Linux TCP sockets over a wired Gigabit
Ethernet network are used to transfer the results from the 3PC
to the HGCs. The communication time ranged from a few ms
when a few KB were transferred, to a couple of seconds when
the layer results were a couple of MB.

This experimental setup serves as an accurate testbed for
evaluating the performance of an HSS. The big core plays the
role of the Commercial Off-the-shelf (COTS) general-purpose
processor (an untrusted component of Model D [3]). The little
cores play the role of the low-performance trustworthy HGCs.
The 3PC is on a separate board, with its own memory and disk,
and can only communicate with the HGCs over the Ethernet,
hence is isolated from the IO peripherals.

We experimented with different sizes of the HGC array
and scaled the frequencies of the cores to study the trade-
offs between the hardware overhead and the performance
improvements obtained with respect to the performance dis-
parity between the 3PC and the HGCs. Table II lists the
frequencies studied in this work. The following shorthand
notation is used to refer to the configurations studied in this
work: B⟨FB⟩_L⟨FL⟩, where FB refers to the frequency of the
Big (3PC), and FL refers to the frequency of the Little (HGC)
cores.

We have chosen 6 popular NNs for our evaluation – resnet18
(68), alexnet (21), vgg16 (39), squeezenet1 0 (65), googlenet
(196), mobilenet v2 (158), where the number of layers is
indicated in brackets. The NNs were executed using the
Pytorch v1.1.0 and the TorchVision v0.3.0 frameworks. The
TorchProfile library was used for timing characterizations.
Layer execution times ranged from a few µs to a few seconds

B. Results

Figure 2 shows the execution times of the HSS (OptimalILP
schedule) relative to a 3PC-only system. The missing bars
indicate those configurations for which the ILP solver (glpsol)
was unable to come up with a solution in a reasonable amount
of time (10-hour timeout). Table III lists the maximum and
mean slowdowns observed for different system configurations

B800_L200

B800_L600

B1200_L200

B1200_L600

B1200_L1000

B1600_L200

B1600_L600

B1600_L1000

B1600_L1400

B2000_L200

B2000_L600

B2000_L1000

B2000_L1400
0

2

4

6

re
la

tiv
e

ex
ec

ut
io

n
tim

e

5.21 7.24 8.49 9.71

HGC-only
resnet18 : HGC-only alexnet : HGC-only vgg16 : HGC-only squeezenet1_0 : HGC-only googlenet : HGC-only mobilenet_v2 : HGC-only

B800_L200

B800_L600

B1200_L200

B1200_L600

B1200_L1000

B1600_L200

B1600_L600

B1600_L1000

B1600_L1400

B2000_L200

B2000_L600

B2000_L1000

B2000_L1400
0

1

2

3
re

la
tiv

e
ex

ec
ut

io
n

tim
e Number of HGCs = 2

resnet18 : assisted alexnet : assisted vgg16 : assisted squeezenet1_0 : assisted googlenet : assisted mobilenet_v2 : assisted

B800_L200

B800_L600

B1200_L200

B1200_L600

B1200_L1000

B1600_L200

B1600_L600

B1600_L1000

B1600_L1400

B2000_L200

B2000_L600

B2000_L1000

B2000_L1400
0.0

0.5

1.0

1.5

2.0

re
la

tiv
e

ex
ec

ut
io

n
tim

e Number of HGCs = 4

B800_L200

B800_L600

B1200_L200

B1200_L600

B1200_L1000

B1600_L200

B1600_L600

B1600_L1000

B1600_L1400

B2000_L200

B2000_L600

B2000_L1000

B2000_L1400
0.0

0.5

1.0

1.5

2.0

re
la

tiv
e

ex
ec

ut
io

n
tim

e Number of HGCs = 8

Fig. 2: Performance of the proposed HSS (optimal ILP-based schedule) and a HGC-only system relative to a 3PC-only system

relative to the 3PC-only system and the OptimalILP system.
We can see that the proposed HSS far outperforms the HGC-
only system at every design point – across (i) varying number
of HGCs, (ii) a wide range of 3PC and HGC frequencies, and
(iii) all the studied applications.

We observe that on average, the performance loss on an HSS
that uses OptimalILP is under 6.26% as compared to the 3PC-
only system. However, the corresponding HGC-only system is
slower than the 3PC-only system by 80.89%. Therefore, the
proposed scheme of assisted parallelization has improved the
system performance without compromising the security of the
system (due to adherence to the principle of the sphere of
containment). However, this has come at a cost of increased
hardware resources (upto 7 additional HGCs).

The maximum benefits of the proposed scheme is seen
in the case of vgg16 where the time taken by the
HGC-only execution was 9.71× that of the 3PC-only execu-
tion (B2000_L200), while the time taken by an HSS with 8
HGCs was only 1.81× which is an improvement of 5.4×.

Figure 3 shows the performance of the HSS when using the
different scheduling techniques proposed. The Near-optimal
techniques were programmed in C++, and produced sched-
ules in a few milliseconds for each of the design points.
In comparison, the ILP solver took anywhere from a few
seconds to a few hours. In many cases, no solution was
produced even after the timeout period of ten hours. Each

TABLE III: Slowdowns of different trusted systems relative to
a 3PC-only and a OptimalILP system

HGCs System
Slowdown (in %) relative to
3PC-only OptimalILP

Max Mean Max Mean
2 HSS-OptimalILP 73.84 6.01 0.0 0.0
2 HSS-ApproxBatch 94.99 12.98 23.61 6.58
2 HSS-GreedyHGC 77.55 10.86 16.18 4.58
2 HSS-GreedyECT 128.01 19.34 38.77 12.57
2 HSS-TaskStealing 74.48 6.26 2.85 0.23
2 HGC-only 240.28 44.23 95.75 36.05
4 HSS-OptimalILP 30.2 3.9 0.0 0.0
4 HSS-ApproxBatch 57.47 8.27 33.81 4.2
4 HSS-GreedyHGC 30.18 3.96 0.13 0.06
4 HSS-GreedyECT 98.47 5.83 53.62 1.86
4 HSS-TaskStealing 30.22 3.97 0.56 0.07
4 HGC-only 240.28 65.91 192.38 59.67
8 HSS-OptimalILP 81.09 6.26 0.0 0.0
8 HSS-ApproxBatch 112.31 7.49 17.24 1.16
8 HSS-GreedyHGC 81.02 6.31 0.13 0.05
8 HSS-GreedyECT 117.0 6.65 28.24 0.37
8 HSS-TaskStealing 81.05 6.31 0.13 0.05
8 HGC-only 871.08 80.89 436.23 70.24

bar represents the geometric mean of the relative execution
times (relative to the 3PC-only system) of all six applications
across those configurations for which the ILP solver produced
a schedule. The configurations where the ILP solver did not
return a solution are not considered. The mean and maximum
slowdowns are also summarized in Table III.

We observe that across all design points, on an average,
all the near-optimal techniques produce schedules almost as

B800_L200

B800_L600

B1200_L200

B1200_L600

B1200_L1000

B1600_L200

B1600_L600

B1600_L1000

B1600_L1400

B2000_L200

B2000_L600

B2000_L1000

B2000_L1400
mean max

1.0

1.5

2.0

2.5

3.0

3.5

4.0

re
la

tiv
e

ex
ec

ut
io

n
tim

e

Number of HGCs = 2
OptimalILP ApproxBatch GreedyHGC GreedyECT TaskStealing HGC-only

B800_L200

B800_L600

B1200_L200

B1200_L600

B1200_L1000

B1600_L200

B1600_L600

B1600_L1000

B1600_L1400

B2000_L200

B2000_L600

B2000_L1000

B2000_L1400
mean max

1.0

1.5

2.0

2.5

3.0

3.5

4.0

re
la

tiv
e

ex
ec

ut
io

n
tim

e

Number of HGCs = 4
OptimalILP ApproxBatch GreedyHGC GreedyECT TaskStealing HGC-only

B800_L200

B800_L600

B1200_L200

B1200_L600

B1200_L1000

B1600_L200

B1600_L600

B1600_L1000

B1600_L1400

B2000_L200

B2000_L600

B2000_L1000

B2000_L1400
mean max

1.0

1.5

2.0

2.5

3.0

3.5

4.0

re
la

tiv
e

ex
ec

ut
io

n
tim

e

9.71

Number of HGCs = 8
OptimalILP ApproxBatch GreedyHGC GreedyECT TaskStealing HGC-only

Fig. 3: Performance comparison of the proposed scheduling techniques

good as OptimalILP. The TaskStealing heuristic is the best
among the four techniques with the mean loss in performance
of < 0.23% of OptimalILP. The average loss in performance
of GreedyHGC, ApproxBatch, and GreedyECT are < 4.58%,
< 6.58% and < 12.57% respectively. We also note that the
maximum loss in performance of TaskStealing, GreedyHGC,
ApproxBatch and GreedyECT are 2.85%, 16.18%, 33.81%,
and 53.62% respectively.

1) Performance disparity in 3PC and HGC: The studies
indicate that the greater the disparity in the performance
(frequencies) of the 3PC and the HGC, the greater the benefit
obtained through assisted parallelization. Thus, the proposed
scheme allows trustworthy chips fabricated under technologi-
cally constrained programs such as the TFP to continue to be
used in sensitive systems as HGCs without significant loss in
performance.

VI. CONCLUSION

We outlined a DFT technique to construct an HSS that
uses a combination of low-performance trustworthy and high-
performance untrusted cores. Further, we proposed a technique
of Assisted Parallelization for NN applications executing on
an HSS such that the loss in performance as compared to the
state-of-the-art is significantly reduced without compromising
on security. Additionally, our proposed techniques requires
no modifications to the source code of the NN application.

Our evaluation on six NN applications showed significant
performance improvements in the execution times of the
applications on the HSS as compared to a conventional HGC-
only system.

REFERENCES

[1] V. Khemani, M. H. Azarian, and M. G. Pecht, “Prognostics and secure
health management of electronic systems in a zero-trust environment,” in
Annual Conference of the PHM Society, vol. 13, no. 1, 2021.

[2] R. Kalayappan and S. R. Sarangi, “Seccheck: A trustworthy system
with untrusted components,” in 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 379–384.

[3] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 22, no. 1, pp. 1–23, 2016.

[4] S. Bhunia and M. Tehranipoor, The Hardware Trojan War. Springer,
2018.

[5] C. Liu, J. Rajendran, C. Yang, and R. Karri, “Shielding heterogeneous
mpsocs from untrustworthy 3pips through security-driven task schedul-
ing,” IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 4,
pp. 461–472, 2014.

[6] T. Reece, D. B. Limbrick, and W. H. Robinson, “Design comparison
to identify malicious hardware in external intellectual property,” in
2011IEEE 10th International Conference on Trust, Security and Privacy
in Computing and Communications. IEEE, 2011, pp. 639–646.

[7] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A study of slipstream
processors,” in Proceedings of the 33rd annual ACM/IEEE International
Symposium on Microarchitecture, 2000, pp. 269–280.

[8] T. M. Austin, “Diva: A reliable substrate for deep submicron mi-
croarchitecture design,” in MICRO-32. Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture. IEEE, 1999.

