
39

ChunkedTejas: A Chunking-based Approach to Parallelizing
a Trace-Driven Architectural Simulator

RAJSHEKAR KALAYAPPAN, Indian Institute of Technology Dharwad, India

AVANTIKA CHHABRA, Indian Institute of Technology Delhi, India

SMRUTI R. SARANGI, Indian Institute of Technology Delhi, India

Research in computer architecture is commonly done using software simulators. The simulation
speed of such simulators is therefore critical to the rate of progress in research. One of the less
commonly used ways to increase the simulation speed is to decompose the benchmark’s execution
into contiguous chunks of instructions and simulate these chunks in parallel. Two issues arise from
this approach. The first is of correctness, as each chunk (other than the first chunk) start from an
incorrect state. The second is of performance: the decomposition must be done in such a way that
the simulation of all chunks finishes at nearly the same time, allowing for maximum speedup. In
this paper, we study these two aspects and compare three different chunking approaches (two of
them are novel) and two warmup approaches (one of them is novel). We demonstrate that average
speedups of up to 5.39𝑋 can be achieved (while employing 8 parallel instances), while constraining
the error to 0.2% on average.

CCS Concepts: � Hardware � Modeling and parameter extraction;

Additional Key Words and Phrases: Architectural Simulator, Simulator Performance, Parallelization

ACM Reference Format:
Rajshekar Kalayappan, Avantika Chhabra, and Smruti R. Sarangi. 2018. ChunkedTejas: A Chunking-
based Approach to Parallelizing a Trace-Driven Architectural Simulator. ACM Trans. Model. Comput.
Simul. 9, 4, Article 39 (March 2018), 23 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Computer architecture research is done with the aid of architectural simulators. Research
proposals are typically evaluated by implementing them in simulators, and experimenting
with a range of workloads and processor configurations. A thorough design space exploration
is necessary to fully evaluate a proposal and determine its merit and applicability. This
is a highly time consuming task. Consequently, the speed of the simulator is critical in
determining the rate of research and the progress in the area. In this paper, we implement
and evaluate a novel class of methods for increasing the speed of architectural simulators.

Authors’ addresses: Rajshekar Kalayappan, Indian Institute of Technology Dharwad, Dharwad, Karnataka,

580011, India, rajshekar.k@iitdh.ac.in; Avantika Chhabra, Indian Institute of Technology Delhi, Hauz Khas,
New Delhi, Delhi, 110016, India, avantikachhabra@outlook.com; Smruti R. Sarangi, Indian Institute of
Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, India, srsarangi@cse.iitd.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned

by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing

Machinery.
XXXX-XXXX/2018/3-ART39 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:

March 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 R. Kalayappan et al.

There are many open-source architectural simulators [3–6, 11, 12] available that can be
employed for academic research. Simulators can be classified as execution-driven or trace-
driven. An execution-driven simulator takes an executable of the benchmark as input, and
emulates its execution – that is, it maintains the state of all registers and the memory, and
performs operations on them as directed by the instructions in the executable. Simultaneously,
the simulator also models the specified hypothetical test processor architecture, and exercises
its structures as directed by the emulation, to give performance and power numbers for the
test architecture. gem5 [3] is an example of an execution-driven simulator. A trace-driven
simulator takes as input a trace that captures the emulation of the executable. This trace can
be produced by a separate emulator running in parallel, such as in Sniper [5] and Tejas [12],
which use Intel PIN [1] as the external emulator. The trace can also be made available as a
stored file that is generated by an external emulator. Both classes of simulators are popular.
Simulators can also be classified as cycle-level or approximate. Cycle-level simulators

exercise each structure of the processor, at the cycle level, for all the benchmark instructions
that need to be simulated. Approximate simulators choose a sampling approach where they
simulate at the cycle level for a brief sampling period, and then extrapolate the statistics
to account for a larger number of cycles / instructions. This is based on the insight that a
workload typically exhibits similarity in its utilization of the processor resources for large
phases. Again, both classes of simulators are widely employed in computer architecture
research.

In this work, we focus on improving the performance of trace-driven, cycle-level simulators.
The proposed approach can be extended to execution-driven simulators as well, but we do not
evaluate that here. The proposed approach is orthogonal to a sampling-based approximate
approach, and can be employed to complement the latter.
Modern chips are typically multi-core, and it is common for research groups to have

multiple servers, giving them a significant amount of parallel compute capability. A simulator
(of a single thread of execution) however runs on a single thread and cannot exploit the
available infrastructure. We wish to parallelize this single simulator thread. Our proposed
approach is inspired by the work by Nguyen et al. [8]. The essential idea is to break a
benchmark thread into contiguous chunks of execution, and then simulate each chunk in
parallel. As a trivial example, if we are interested in simulating the first billion instructions of
a single threaded benchmark, we can simulate it as two chunks: one instance of the simulator
simulates the first five hundred instructions, while a second instance simulates the next five
hundred million. Ideally, this would double the simulator’s performance. This technique can
be extended to N chunks to get a speedup of 𝑁 times.

Two issues exist with this approach. Firstly, simulating in this manner induces error. The
initial state of the simulated processor is incorrect for all the chunks other than the first.
Thus, measures have to be taken to reduce this error to acceptable amounts. Secondly, the
decomposition into chunks cannot be done arbitrarily. It must be done in a manner such
that the time required to simulate each chunk is exactly the same, thereby providing the
maximum possible speedup. In this work, we explore solutions to these two issues, and show
that this approach of chunking is a promising technique for improving simulator performance.
In Section 2, we describe the structure of a trace-driven, cycle-level simulator, and the

basic chunking methodology in the context of the described simulation model. We then
describe an offline approach to chunking based simulation in Section 3, for both single and
multi-core test architectures. In Section 4, we describe an online approach to chunking
simulation. In Section 5, we describe approaches to reducing the error induced by the
chunking process. We then evaluate the various chunking techniques and error reducing

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:

March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:3

approaches in Section 6. Finally, in Section 7, we discuss alternate approaches mentioned
in the literature to increasing the speed of architectural simulators, all of which may be
complemented by our proposed approach.

2 BACKGROUND

2.1 Trace-driven Cycle-level Simulators

Benchmark

emulator simulator

Target
Processor

Configuration

Performance
and Power
Statistics

execution
trace models of

pipelines, caches,
interconnects, etc.

Fig. 1. Trace-Driven Simulator: An Overview

Figure 1 provides a high level description of a trace-driven simulator. To avoid confusion, we
will refer to the complete architectural “Simulator” with a capital ‘S’, while its constitutent
entities as “emulator” and “simulator” (small ‘s’). The emulator executes the benchmark
and generates a trace that describes the execution. The emulator can be a process running
simultaneously with the simulator, or can be run once and the generated trace can be stored
in a file. In both cases, the trace contains instructions of the benchmark, in the order in
which they were executed. In the latter file-based case, we will assume that a separate
process reads the file and forwards the read trace to the simulator, and call this process the
emulator, so as to generalize the discussion.
Along with the executed instructions, the trace also records the addresses at which

memory operations were performed by the benchmark, as well as the outcome of branch
instructions. This information is sufficient to simulate the execution of the benchmark on
the test architecture. Given the trace, the simulator exercises the architectural models,
configured according to the user’s specification, and provides the required performance and
power statistics. Note that the simulator in a trace-based Simulator need not simulate the
functionalities of the different processor components. Rather, it focuses only on capturing
the timing and power consumption aspects. For example, when performing a load, the actual
value loaded is of no concern. Rather, the address is important, as it tells us the closest
cache level in the memory hierarchy where the cache line is present. This tells us the time
needed to perform the load operation, and consequently when instructions dependent on the
load may be issued by the pipeline.

Note that the simulation step is the determining factor of the performance of the Simulator.
The emulator is typically two orders of magnitude faster than the simulator. But since the
emulator’s output, that is, the trace must be consumed by the simulator before the former
can produce more, the emulator is forced to slow down and operate at the speed of the
simulator.

Most popular Simulators (such as Sniper [5], gem5 [3], and Tejas [5], with some minimal
changes) support the following four modes of operation:

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:

March 2018.

39:4 R. Kalayappan et al.

(1) Full-Simulation: This is the default mode of operation for a Simulator. Every aspect
of every instruction is simulated – all architectural structures to be exercised are done
so. All statistics are collected. The emulator forwards details of every benchmark
instruction.

(2) Full-Simulation-No-Statistics: Here again, every aspect of every instruction is
simulated. However, in this mode, statistics are not collected. The emulator forwards
details of every benchmark instruction. The simulation speed is the same as that of
Full-Simulation.

(3) Structures-X-Only: In this mode, only the structures mentioned in list X are exercised
during simulation. Only the functionality is simulated, and not the timing. No statistics
are collected in this mode. The emulator forwards only those instructions that will
influence the listed structures, and drops everything else. For example, in the mode
Structures-LLC-BPred-Only, the simulator only exercises the last level cache (LLC)
and the branch predictor. It does not capture the timing. It simply updates the set
of addresses present in the LLC when simulating memory accesses, and the predictor
tables when simulating the branch predictor. Additionally, the emulator forwards
details of only the branches and memory instructions. All other instructions are
simply dropped. The number of instructions processed per second when running in
the Structures-LLC-BPred-Only mode is an order of magnitude higher than that of
Full-Simulation.

(4) Fast-Forward: All instructions are dropped by the emulator in this mode, and no
statistics are collected. The number of instructions processed per second is two orders
of magnitude higher than that of Full-Simulation.

2.2 Chunked Simulation

We now formally describe the basic idea of chunked simulation. Let us assume a single
thread of execution of 𝑁𝑖𝑛𝑠𝑡 instructions. Let us number the instructions executed by the
emulator sequentially from 0 to 𝑁𝑖𝑛𝑠𝑡 − 1. We then decompose the thread of execution into
𝑁𝑐ℎ𝑢𝑛𝑘 chunks of contiguous instructions. Each chunk 𝐶ℎ𝑖, 0 ≤ 𝑖 < 𝑁𝑐ℎ𝑢𝑛𝑘, starts from
instruction 𝑆𝐼𝑖, and ends at 𝐸𝐼𝑖, with 𝑆𝐼𝑖 < 𝐸𝐼𝑖. Also, ∀𝑖, 0 < 𝑖 < 𝑁𝑐ℎ𝑢𝑛𝑘, 𝑆𝐼𝑖 = 𝐸𝐼𝑖−1 + 1.
𝑁𝑐ℎ𝑢𝑛𝑘 instances of the Simulator are spawned: one for each chunk. A Simulator instance
𝑆𝑖𝑚𝑖 operates in the Fast-Forward mode for instructions 0 to 𝑆𝐼𝑖 − 1, and then in the
Full-Simulation mode for instructions 𝑆𝐼𝑖 to 𝐸𝐼𝑖, collects the statistics, and terminates.
Once all 𝑁𝑐ℎ𝑢𝑛𝑘 instances finish simulation, the gathered statistics are aggregated through
simple summation to provide the final statistics for the entire benchmark.

2.2.1 Induced Error, and Mitigation Techniques. Consider the following benchmark appli-
cation:

1 f o r (i n t i = 0 ; i < 100 ; i++)

2 sum += i ;

A correct simulation of a benchmark on the test architecture is obtained by simulating it
entirely in the Full-Simulation mode. Now let us consider the case of a 2-way chunked
simulation. The first instance of the simulator simulates half the instructions, which we will
roughly equate to the first 50 loop iterations for ease of discussion. The second simulator
instance simulates the last 50 iterations.
First, let us clarify that there is no functional correctness issue. As mentioned earlier,

trace-based simulators do not concern themselves with actual values stored in registers and
memory locations. Accurately calculating the sum of the first hundred integers, as described

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:5

in the above benchmark, is not one of the objectives. Focus is instead on capturing timing,
power, and other statistics accurately.

Now, it can be seen that the chunking approach induces an error in the statistics. Let us
say that the array is in memory, and is brought to the L1 cache by the load instructions.
Let us say that the line size is twenty integers long. So in the full benchmark simulation,
there are five L1 misses. However, in the two-way chunking scenario, there are six L1 misses
– three in the first chunk and three in the second. Thus, the timing and other statistics differ
– an error has been induced in the simulation.

When we begin simulating a chunk 𝐶ℎ𝑖 (𝑖 ≠ 0), the state of the simulated structures is
different from that which exists at the end of simulating the first 𝑆𝐼𝑖 instructions in the
Full-Simulation mode. In the above example, the difference in state was illustrated in the
L1 cache. Consequently, there is a difference in the collected statistics as well. For chunked
simulation to be employable, measures must be taken to mitigate this error.
Nguyen et al. [8] proposed to have overlapping chunks. In terms of the above de-

fined notation, their proposal functions as follows. We first simulate in the Fast-Forward

mode for instructions 0 to 𝑆𝐼𝑖 − 1 − 𝑊 , for some constant warmup size 𝑊 , then in the
Full-Simulation-No-Statistics mode for instructions 𝑆𝐼𝑖 − 1−𝑊 to 𝑆𝐼𝑖 − 1, and then
in the Full-Simulation mode for instructions 𝑆𝐼𝑖 to 𝐸𝐼𝑖. The 𝑊 instructions simulated
in the Full-Simulation-No-Statistics mode help “warmup” the state of architectural
structures to one that is closer to that which will exist at the end of a correct simulation of
the first 𝑆𝐼𝑖 instructions. For instance, in the above benchmark, warmup would constitute
bringing in the relevant cache line in to the L1 cache before the statistics are collected in the
second simulator instance. This reduces the error induced by the chunked approach. However,
determining the value of 𝑊 is non-trivial. Too small a value of 𝑊 increases the error. At
the same time, too large a value reduces the speedup obtained through chunking. The
warmup period is essentially overhead – during the simulation of 𝑁𝑐ℎ𝑢𝑛𝑘 ×𝑊 instructions,
statistics are not collected. The appropriate value for 𝑊 is also heavily benchmark dependent.
Nguyen et al. [8] suggest an approach to estimate the least value of 𝑊 such that the error is
relatively low. They propose to utilize the average memory access frequency of the workload,
along with the average hit rate, to guess the minimum number of instructions that need to
be simulated such that the caches can be populated with the relevant lines. Such apriori
knowledge may be available in many cases, when the same benchmarks need to be simulated
against different configurations where the memory system remains relatively unchanged.
However, this may not always be the case. It may be needed to simulate new benchmarks,
and/ or it may be needed to change the simulated memory system in each simulation. Thus,
a better alternative to warmup the system state is required.

2.2.2 Reduced Speedup due to Equal-Sized Chunks. The speed of simulation, that is the
number of instructions simulated per second, is not dependent on the native machine alone.
It is also heavily dependent on the nature of the benchmark. Consider the simulation of
the first billion instructions on the benchmark “bzip2” from the SPEC CPU2006 suite.
Figure 2(a) shows the speed of simulation, in kilo-instructions per second, recorded for
each slice of 100000 instructions, and Figure 2(b) shows the variation in the instructions
executed per cycle (in the simulation). Figures 2(a) and 2(b) clearly show the variation
in simulation speed as the benchmark progresses through different phases. Thus, a naive
approach of having chunks of equal number of instructions, that is, 𝑆𝐼𝑖 =

𝑁𝑖𝑛𝑠𝑡

𝑁𝑐ℎ𝑢𝑛𝑘
× 𝑖, and

𝐸𝐼𝑖 = 𝑆𝐼𝑖 +
𝑁𝑖𝑛𝑠𝑡

𝑁𝑐ℎ𝑢𝑛𝑘
, may not produce the best performance. Each resulting chunk may

then require different amounts of time to simulate. Since the time of simulating the entire

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:6 R. Kalayappan et al.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time (seconds)

0

100

200

300

400

500

600

KI
PS

bzip2

0 1 2 3 4 5 6 7 8 9
cycles 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

bzip2

(a) (b)

Fig. 2. Relationship between simulation speed and the program phase for the bzip2 benchmark

benchmark is effectively the time taken by the longest chunk (in terms of simulation time),
the achieved speedup may be sub-optimal. Thus, measures need to be taken to ensure that
the simulation workload is distributed equitably among the different Simulator instances
such that they all finish at the same time, and provide higher speedup.

2.3 Contributions of this Work

Given the shortcomings of the prior approach to chunked simulation, we make the following
contributions:

∙ We propose an approach to chunking that attempts to divide the simulation into
chunks that require near-equal time to simulate. This enables near-maximum speedup.
We call this approach “offline chunking” (Section 3).

∙ We extend this offline approach for serial workloads, to parallel ones. Chunking-based
simulation of parallel benchmarks has not been studied before.

∙ The offline approach gives good speedups when simulating configurations that are not
too different from a base reference run. However, if the configuration to be simulated
is very different, then the offline approach gives modest speedups. We thus propose an
“online task-stealing approach” for single threaded benchmarks, that does not require a
reference run (Section 4.2).

∙ The task-stealing approach cannot be applied for parallel benchmarks, because the
definition of a task is more complicated in a parallel benchmark. We propose a sampling
based approach to determining the task definition, which is heaviliy determinant on
the program phase, and then propose a parallelized simulation of tasks (Section 4.3).

∙ The warmup mechanism in prior work has shortcomings as detailed above. We propose a
new warmup technique that is based on the principle that different on-chip components
require different warmup approaches. This approach allows for reduction in error, while
having a minimal effect on speedup (Section 5.2).

3 OFFLINE CHUNKING

This approach works for both single core and multi core test architectures. The basic idea is
to have a reference single run of the entire benchmark, in which we periodically record the

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:7

number of instructions simulated in each thread. This would then allow us to decompose
the workload into chunks such that each chunk takes the same time to be simulated.

3.1 Methodology

We first perform a single reference run that will provide us with the required information
regarding the progress of each of the benchmark threads over time. Two important facets
need to be realized, with the second one being done as a consequent of the first one being
achieved. First, for each thread 𝑡, given a time 𝜏 , we would like to know the number of
instructions of thread 𝑡 that have been simulated in the first 𝜏 seconds of simulation. Second,
we would like to know the number of instructions 𝑛2 of thread 𝑡2 that have been simulated
in the time a given thread 𝑡1 has simulated 𝑛1 instructions.

In our reference run, we periodically record the number of instructions simulated per thread.
This helps us realize the function NumInst(𝑡, 𝜏) that returns the number of instructions of
thread 𝑡 simulated in the first 𝜏 seconds of the reference simulation. Through this function,
we realize the aforementioned facets.

Now, given the function NumInst, we devise an algorithm to divide the simulation workload
into equal chunks. Let us denote the total time taken for the simulation by 𝑇𝑡𝑜𝑡𝑎𝑙, and the
number of threads in the benchmark by 𝑁𝑡ℎ𝑟𝑒𝑎𝑑. We then follow Algorithm 1 to decompose
the simulation workload and appropriately spawn the 𝑁𝑐ℎ𝑢𝑛𝑘 Simulator instances. The
Spawn function takes the starting instruction number and ending instruction number of
each benchmark thread. It performs forward/ warmup to the start of the chunk. Now
that the architectural state is close enough to ideal, it then performs simulation in the
Full-Simulation mode, where the statistics are collected. We will discuss different warmup
alternatives in Section 5.
ALGORITHM 1: Offline Decomposition into Chunks

for 𝑛𝑐ℎ𝑢𝑛𝑘 ∈ [0, 𝑁𝑐ℎ𝑢𝑛𝑘) do
𝑆 𝑎𝑟𝑟𝑎𝑦 = [];

𝐸 𝑎𝑟𝑟𝑎𝑦 = [];

for 𝑛𝑡ℎ𝑟𝑒𝑎𝑑 ∈ [0, 𝑁𝑡ℎ𝑟𝑒𝑎𝑑) do

𝑆𝐼 = NumInst(𝑛𝑡ℎ𝑟𝑒𝑎𝑑,
𝑇𝑡𝑜𝑡𝑎𝑙
𝑁𝑐ℎ𝑢𝑛𝑘

× 𝑛𝑐ℎ𝑢𝑛𝑘);

append 𝑆𝐼 to 𝑆 𝑎𝑟𝑟𝑎𝑦;

𝐸𝐼 = NumInst(𝑛𝑡ℎ𝑟𝑒𝑎𝑑,
𝑇𝑡𝑜𝑡𝑎𝑙
𝑁𝑐ℎ𝑢𝑛𝑘

× (𝑛𝑐ℎ𝑢𝑛𝑘 + 1))− 1;

append 𝐸𝐼 to 𝐸 𝑎𝑟𝑟𝑎𝑦;

end
Spawn(𝑆 𝑎𝑟𝑟𝑎𝑦,𝐸 𝑎𝑟𝑟𝑎𝑦)

end

Function Spawn(𝑆 𝑎𝑟𝑟𝑎𝑦,𝐸 𝑎𝑟𝑟𝑎𝑦)
start Simulator instance;

instantiate simulated processor of 𝑁𝑡ℎ𝑟𝑒𝑎𝑑 cores;

simultaneously simulate the 𝑁𝑡ℎ𝑟𝑒𝑎𝑑 threads as follows;

for 𝑛𝑡ℎ𝑟𝑒𝑎𝑑 ∈ [0, 𝑁𝑡ℎ𝑟𝑒𝑎𝑑) do
if 𝑆 𝑎𝑟𝑟𝑎𝑦[𝑛𝑡ℎ𝑟𝑒𝑎𝑑] > 0 then

simulate first 𝑆 𝑎𝑟𝑟𝑎𝑦[𝑛𝑡ℎ𝑟𝑒𝑎𝑑]− 1 instructions of thread 𝑛𝑡ℎ𝑟𝑒𝑎𝑑, according to the
chosen warmup technique, on core 𝑛𝑡ℎ𝑟𝑒𝑎𝑑;

end
simulate from instruction 𝑆 𝑎𝑟𝑟𝑎𝑦[𝑛𝑡ℎ𝑟𝑒𝑎𝑑] to 𝐸 𝑎𝑟𝑟𝑎𝑦[𝑛𝑡ℎ𝑟𝑒𝑎𝑑] of thread 𝑛𝑡ℎ𝑟𝑒𝑎𝑑, in
Full-Simulation mode, on core 𝑛𝑡ℎ𝑟𝑒𝑎𝑑;

end

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:8 R. Kalayappan et al.

A naive approach of decomposing into equal-sized chunks [8] will result in sub-optimal
speedups in most workloads, as discussed in Section 2.2.2. The speedup will be optimal
only when the benchmark shows uniform behavior, without any change of phase, for its
entire run. Not many realistic applications operate in a single phase. The proposed offline
algorithm attempts to find the best “split” of the benchmark, taking into account its
various phases. Also, it must be noted that even in the case of a benchmark with uniform
behavior throughout, the proposed offline algorithm provides the optimal split – that is, into
equal-sized chunks.

It can be seen that, if configured prudently, the approach of chunking will always result in
a speedup. Firstly, like any parallel program, the degree of parallelism 𝑁𝑐ℎ𝑢𝑛𝑘 will have to
be selected keeping in mind the compute resources available. Increasing 𝑁𝑐ℎ𝑢𝑛𝑘 improves
the speedup to a certain extent; further increase sees diminishing benefits to the pressure
on shared resources like the shared cache, and the main memory. Secondly, the chunking
approach increases the amount of work done – each simulator instance, aside from simulating
its assigned chunk in the Full-Simulation mode, also simulates some instructions in the
warmup phase. This additional work constitutes an overhead, which reduces the speedup.
Thus, the warmup strategy will also have to be chosen prudently. It is important to note
that since Fast-Forward (two orders of magnitude) and Structures-X-Only (one order of
magnitude, for typical structure sets) are significantly faster than Full-Simulation mode,
the overhead of warming up can be brought down significantly. Warm up strategies are
discussed in detail in Section 5.

3.2 Limitations of an Offline Approach

The offline approach ensures we get the maximum possible speedup since the workload is
evenly distributed among the chunks. However, there are important caveats in the approach.
The decomposition is based on the per-thread rates of progress recorded in the reference run.
However, the rates of progress may change if the test architecture changes. Consequently, the
decomposition points also change. This has a two-fold impact: first, the points determined
by this approach may be illegal. For instance, the point may suggest that thread 𝑡1 simulates
𝑛1 instructions in the same time that thread 𝑡2 simulates 𝑛2 instructions. However, under
the architecture to be tested, it may be that thread 𝑡2 simulates 𝑛′

2 instructions in the time
that 𝑡1 simulates 𝑛1 instructions. Thus, an error is induced in the simulation. Note that this
error is induced only in the case of multi-core test architectures, and not single core ones.
Second, the points determined may result in unequal distribution of the simulation workload
with a different test architecture, thereby producing a sub-optimal speedup. Design space
exploration will, by definition, require the study of many different configurations, resulting
in sub-optimal speedups in all studies. Therefore, we need a decomposition approach that
does not require a reference run.

For reasonable changes in the configuration, the offline approach still produces appreciable
speedups with modest errors to remain a viable candidate for chunked simulation (see
Section 6.5). Additionally, the offline approach proves useful in providing a reference against
which online approaches may be compared.

4 ONLINE CHUNKING

In this section, we will discuss online approaches to chunked simulation, that do not employ
any reference runs, and are consequently expected to have wider applicability.

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:

March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:9

4.1 Naive Approach

We first develop a naive chunking scheme, online-naive, that simply decomposes the
workload into chunks of equal number of instructions, without taking any application
phase behavior into account. We simply spawn 𝑁𝑐ℎ𝑢𝑛𝑘 instances of the Simulator, each
instance 𝑆𝑖𝑚𝑖 responsible for the simulation of chunk 𝐶ℎ𝑖. A chunk 𝐶ℎ𝑖 is defined by
𝑆𝐼𝑖 =

𝑁𝑖𝑛𝑠𝑡

𝑁𝑐ℎ𝑢𝑛𝑘
× (𝑖− 1), and 𝐸𝐼𝑖 =

𝑁𝑖𝑛𝑠𝑡

𝑁𝑐ℎ𝑢𝑛𝑘
× 𝑖− 1. This is essentially as proposed by Nguyen

et al. [8]. Since the changing phase behavior is not taken into account, this approach gives
sub-optimal speedups as discussed in Section 2.2.2.

4.2 Task-Stealing Approach for Serial Workloads

Here we develop the online-taskStealing algorithm by following the popular task-stealing
paradigm that helps achieve a more equitable distribution of the workload.

We first decompose the serial workload into𝑁𝑡𝑎𝑠𝑘 small tasks, each of size 𝑆𝑡𝑎𝑠𝑘 instructions.
Just like chunks, tasks also are made up of contiguous instructions, and two tasks do not have
any overlap with each other. 𝑁𝑡𝑎𝑠𝑘 >> 𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, where 𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is the number of Simulator
instances. Each Simulator runs Algorithm 2 to cooperatively divide the task of simulating
the benchmark among themselves. They have an integer variable TASK INDEX (initialized to
0) shared among themselves, that gives the index of the next task to be simulated. Each
Simulator instance atomically reads and increments the value of TASK INDEX. Based on
the value read, it performs forward / warmup to reach the corresponding point in the
benchmark’s execution, and simulates 𝑆𝑡𝑎𝑠𝑘 instructions in the Full-Simulation mode. It
then attempts to read TASK INDEX again, and exits if TASK INDEX > 𝑁𝑡𝑎𝑠𝑘.
Note that an instance does not exit after every task it simulates. Rather, it begins a

warmup phase from that point itself.

ALGORITHM 2: Online Task-Stealing based Decomposition for Serial Benchmarks

𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟 𝑎𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 0;

while TASK INDEX< 𝑁𝑡𝑎𝑠𝑘 do
𝑡𝑎𝑠𝑘 𝑡𝑜 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 = read and increment(TASK INDEX);

forward / warmup for (𝑆𝑡𝑎𝑠𝑘 × 𝑡𝑎𝑠𝑘 𝑡𝑜 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒− 𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟 𝑎𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) instructions;

simulate in Full-Simulation mode for 𝑆𝑡𝑎𝑠𝑘 instructions;

𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟 𝑎𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = (𝑡𝑎𝑠𝑘 𝑡𝑜 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒+ 1)× 𝑆𝑡𝑎𝑠𝑘;

end

This task-stealing approach, just like the offline approach, helps us avoid the caveat of
equal-sized chunks. It ensures that the workload is more equitably distributed among the
Simulator instances. This expectedly gives higher speedups, as discussed in Section 6.2.1.

Deciding the value of 𝑆𝑡𝑎𝑠𝑘 is non-trivial. A lower value gives a finer granularity, ensuring
a more equitable distribution of the simulation load. However, this involves running the
task-stealing algorithm (Algorithm 2) more often. This will reduce performance. Also, a finer
granularity reduces the chances of any given Simulator instance working on long contiguous
sequences of instructions. This increases the simulation error. Our studies regarding the
value of 𝑆𝑡𝑎𝑠𝑘 are presented in Section 6.2.4.

4.3 Online Chunking for Parallel Workloads

The approach for parallel workloads is more involved. The simple approach for serial workloads
cannot be directly applied because the task boundaries are not as clear. As an example, let
us say a Simulator instance has to simulate task number 𝑖. In the serial workload case, it
was clear that the Simulator must begin simulating from instruction (𝑆𝑡𝑎𝑠𝑘 × 𝑖). However,

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:10 R. Kalayappan et al.

in the parallel workload case, each thread’s start point is not clearly known. It is possible
that all threads are functionally similar, and so display a similar throughput. So, we could
simply start each thread from the same instruction number – we could simply fast-forward/
warmup each thread to 𝑆𝑡𝑎𝑠𝑘 × 𝑖 number of instructions, and then simulate 𝑆𝑡𝑎𝑠𝑘 number
of instructions on each thread in Full-Simulation mode. However, benchmarks may have
threads that are asymmetric – each thread may perform a slightly different functionality.
Additionally, even in the functionally similar scenario, threads may communicate with each
other through constructs like spin-locks and barriers. These affect their throughput, and
make it less likely that each thread progresses in a near-identical fashion. Thus, it would
be incorrect to start all threads from the same instruction number. Suppose we have a
2-threaded benchmark, with thread 1 having twice the throughput of thread 2, then warming
up each thread of task 𝑖 for 𝑆𝑡𝑎𝑠𝑘 × 𝑖 instructions, and simulating each thread for 𝑆𝑡𝑎𝑠𝑘

instructions, would be incorrect. Thus, we must first be able to predict the task boundaries
accurately, to achieve an online approach for simulating parallel benchmarks.
We propose an online sampling-based approach to achieve this. We first employ a single

Simulator instance that samples the workload, in order to identify a stable behavioral phase.
A stable phase is one where the relative throughputs of the different threads change negligibly
as execution progresses. We refer to this identified behavior as the “phase definition”: it
is a vector comprising of the number of instructions executed by each benchmark thread in
the time taken for benchmark thread 1 to execute 𝑄 instructions, where 𝑄 is a parameter
to the algorithm. Once, we have identified the phase definition, we spawn 𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 number
of Simulator instances, that simulate tasks in parallel. Given a task to simulate, and the
phase definition, a Simulator instance fast-forwards/ warms up to the corresponding start
point, and executes a single task from there. The Simulator instances keep doing this until
(i) they reach the end of simulation, or (ii) they identify that the behavior of the benchmark
has deviated from the phase definition. In the latter case, the sampling operation, and
the steps mentioned above, are repeated.

A benchmark with longer predictable phases will be more amenable to the online approach,
as opposed to one that changes its behavior often, as the latter demands frequent sampling,
which reduces the speedup. The observations are presented in Section 6.3.2.

Algorithm for Online Chunking based Simulation for Parallel Workloads. Algorithms 3,4 give
a formal description of the proposed approach. The state of the simulation is defined as a
tuple of the different statistics: the number of instructions executed by each benchmark
thread, 𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑[], the number of simulated cycles, the number of hits and misses at each
of the caches, to name a few.
Let us define the addition and subtraction operators (+/−) for the 𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 vector as

follows: for three states A, B, and C, 𝐶.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 = 𝐴.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 + (−)𝐵.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 results in
𝐶.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑[𝑖] = 𝐴.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑[𝑖] + (−)𝐵.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑[𝑖], 0 ≤ 𝑖 < 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠, where 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 is the
number of threads in the parallel workload. Let us define the multiplication operator (×) for
the 𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 vector as follows: for two states A and B, 𝐵.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 = 𝑠𝑐𝑎𝑙𝑎𝑟 ×𝐴.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

results in 𝐵.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑[𝑖] = 𝑠𝑐𝑎𝑙𝑎𝑟 ×𝐴.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑[𝑖], 0 ≤ 𝑖 < 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠.

5 WARMUP TECHNIQUES

A naive way of warming up would be to simply run the simulator instance in Full-Simulation-No-Statistics
mode up to the 𝑆𝐼𝑡ℎ instruction. This would ensure the ideal state to begin simula-
tion of the assigned chunk, thus, resulting in zero error. However, the time taken by

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:11

ALGORITHM 3: Online Chunking based Simulation for Parallel Benchmarks (Part 1 of 2)

Function main()
𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒 = initialize state;

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑛𝑒 = False;

while 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑛𝑒 = False do
< 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒, 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 >=sample(𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒);

< 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑛𝑒 >=guide simulation(𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒, 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛);

end

report statistics from 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒;

Function sample(𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒)
𝑐𝑢𝑟 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 0;

while True do
𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 = simulate in Full-Simulation mode from 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒 until thread 1 executes 𝑄
instructions;

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛[(𝑐𝑢𝑟 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒++)%𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒] =
𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑− 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 //𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 is a parameter to the algorithm;

𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒 = 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒;

if 𝑐𝑢𝑟 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≥ 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 then
conduct a chi-square homogeneity test taking each 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 as a
population, and the per-thread executed instruction counts as categories;

if the contents of the window are homogeneous then
return < 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛[0] > //stable phase found;

end

end

end

Full-Simulation-No-Statistics mode is the same as Full-Simulation, and so the time
taken to simulate the last chunk is the same as the base case. Thus, the speedup is zero.
We describe two more useful approaches to warming up the simulated architectural

structures such that the error induced due to the chunked approach is reduced, while the
speedup is not compromised as much as the naive approach.

5.1 WT1: Fast-Forward, followed by Full Functional Warmup

The first warmup scheme WT1 is similar to that proposed by Nguyen et al. [8]. To simulate
a chunk from the 𝑆𝐼𝑡ℎ instruction to the 𝐸𝐼𝑡ℎ instruction, we first run in Fast-Forward

mode for 𝑆𝐼−𝑊 instructions, where 𝑊 is some pre-defined constant number of instructions.
We then simulate for 𝑊 instructions in the Full-Simulation-No-Statistics mode to
warmup the simulated structures. We then simulate for (𝐸𝐼 − 𝑆𝐼) instructions in the
Full-Simulation mode.

5.1.1 Shortcoming. The issue with this approach is the determination of the right value
for 𝑊 . A small value increases simulation error, while a large value reduces performance. The
ideal value of 𝑊 is benchmark behavior dependent and therefore fixing it to a single value
does not work well across all benchmarks, as discussed in Section 6.4. We have evaluated
the efficacy of different warmup sizes across different benchmarks.

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:12 R. Kalayappan et al.

ALGORITHM 4: Online Chunking based Simulation for Parallel Benchmarks (Part 2 of 2)

Function guide simulation(𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒, 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛)
while True do

TASK INDEX = 0;

for 𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∈ [0, 𝑁 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) do
𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = fast-forward/ warmup (in parallel with other instances)
Simulator 𝑛𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 to 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 + TASK INDEX× 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛;

Run Simulator 𝑛𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (in parallel with other instances) in Full-Simulation mode
until 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 number of instructions are simulated on the threads;

TASK INDEX++;

end

for 𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∈ [0, 𝑁 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) do
𝑒𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 = wait for Simulator 𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 to complete;

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑡𝑎𝑠𝑘 = 𝑒𝑛𝑑 𝑠𝑡𝑎𝑡𝑒.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 − 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒.𝑁𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑;

if 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑡𝑎𝑠𝑘 and 𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 are not homogeneous then
return < 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝐹𝑎𝑙𝑠𝑒 >;

end

else
𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒 = 𝑒𝑛𝑑 𝑠𝑡𝑎𝑡𝑒;

if end of simulation then
return < 𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒, 𝑇 𝑟𝑢𝑒 >;

end

end

end

end

5.2 WT2: 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠−𝑋 − 𝑜𝑛𝑙𝑦

The need for warmup is to achieve a processor state as close as possible to that which
would exist if Full-Simulation was done up till that point. Processor state is defined as
the contents of all the storage elements: the private and shared caches, the main memory,
and in the pipeline, the register files, the reorder buffer, the load-store queue, the instruction
window, the rename tables, and the branch predictor tables. In a trace-driven simulator,
in line with the discussion in Section 2, processor state is defined slightly differently. For
caches (we restrict our discussion to on-chip components for the sake of brevity, and hence
don’t talk about the main memory), the processor state is the set of line addresses present.
The line contents do not matter. For register files, the processor state is the ready status
of the different registers. For the remaining structures, which are all pipeline elements, the
processor state is the contents themselves.

Now let us look at what it takes to build up the state of these different structures. At one
end of the spectrum, we have the different pipeline structures and the register files. These are
very small structures and are updated very frequently during execution. Consequently, the
state at instruction number 𝑖, with very high probability, is the result of only updates made
in the last few hundred cycles or so. In other words, only a couple of hundred instructions
preceding instruction 𝑖 contributed towards the state at 𝑖. Older instructions’ effects are
masked. At the other end of the spectrum, we have the last level cache. This is a large
structure, and is not updated very frequently. Consequently, updates made hundreds of

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:13

Table 1. Simulated processor architecture

Parameter Value Parameter Value

System Configuration

Cores 16 Microarchitecture based on Intel Skylake

Technology 14 nm Frequency 3.4 GHz

Core Configuration

Retire Width 4 Issue Width 4

Private L1 i-cache, d-cache

Size 32 kB Latency 3 cycles

Private L2 Unified Cache

Size 256 kB Latency 8 cycles

Shared Elements

L3 cache 8MB / 24 cycles Main Memory Latency 120 cycles

Network-on-Chip

Topology 2-D Torus Routing Alg. Simple XY

Flit size 8 bytes Hop-latency 1 cycle
Router-Latency 2 cycles

millions of cycles before instruction 𝑖’s execution also have a role in the state of the LLC at
𝑖.
In the context of warming up, this mode of classifying structures is important. For

example, suppose we wish to simulate a chunk of 20 million instructions starting from the
500 millionth instruction. We only need to warm the register files up from the 499999000𝑡ℎ

instruction, as a 1000 cycle warm up is more than sufficient to get a good starting register
file state. Alternatively, we can even skip warming up the register files completely. The first
1000 instructions of the simulation will differ from the ideal. But the remaining 19999000
instructions will match the ideal. Thus, the error is quite minuscule.

But when warming up the LLC, the approach needs to be different. A simple 1000 cycle
warmup will hardly produce a satisfactory cache state. The warmup needs to be much longer.
Likewise, we cannot afford to skip the warming up of the LLC. A large warmup is mandatory.

We have studied this non-homogeneous approach of warming up only selected structures.
Our results are presented in Section 6.4. This approach, termed WT2, involves simulating
the first (𝑆𝐼 − 1) instructions in the 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠−𝑋 −𝑂𝑛𝑙𝑦 mode, and the next 𝐸𝐼 − 𝑆𝐼
instructions in the Full-Simulation mode. We have evaluated for different sets for 𝑋, and
found that the LLC and the branch predictor tables are the most critical. These results are
presented in Section 6.4.
WT2 ensures low error regardless of the benchmark behavior, but can potentially result

in lower speedups. We compare and contrast the different variations of WT1 and WT2 in
Section 6.4.

6 EVALUATION

6.1 Evaluation Set-up

6.1.1 Simulated Architecture. A 16 core processor was simulated. Each core’s microarchi-
tecture was similar to the Intel Skylake architecture. A shared last level cache of 8 MB was
used. The full architectural details are given in Table 1.

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:14 R. Kalayappan et al.

Table 2. Simulation platform

Parameter Value Parameter Value

Processor Intel(R) Xeon(R) CPU E5-4620 Microarchitecture Sandy Bridge

Cores 48 Frequency 2.2 GHz

Last Level Cache 16 MB Main Memory 64 GB

6.1.2 Simulated Workload. For the single threaded workloads, we simulated the SPEC
CPU2006 benchmark suite. In the case of each benchmark, the first one billion instruc-
tions were simulated. For multi-threaded benchmarks, the PARSEC suite was used. Each
benchmark was made to spawn 16 threads. A cumulative instruction count of one billion
was simulated. We use the cycle-accurate Tejas [12] simulator, which has been rigorously
validated with native hardware. Note that for the serial benchmarks, the Intel PIN [1]
front-end of Tejas was employed, while for parallel benchmarks, the file front-end of Tejas
was used. This was done because with parallel benchmarks, the benchmark threads (16
threads per chunk) themselves would occupy all the cores in our simulation platform, leaving
no scope for a speedup.

6.1.3 Evaluation Methodology. First a standard, non-chunked simulation is performed
to serve as our base run. An 𝑁 -way chunked simulation is performed next. The statistics
of the 𝑁 simulations are aggregated by simple addition of each individual statistic. The

error is computed as |𝐼𝑃𝐶𝑏𝑎𝑠𝑒−𝐼𝑃𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑐ℎ𝑢𝑛𝑘𝑠|
𝐼𝑃𝐶𝑏𝑎𝑠𝑒

× 100. The speedup is computed as
𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛𝑏𝑎𝑠𝑒

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑐ℎ𝑢𝑛𝑘
.

6.1.4 Simulation Platform. All simulations were performed on a server containing Intel
Xeon processors. The full details are given in Table 2.

6.2 Single Threaded Workloads: Offline v/s Naive Online v/s Task-Stealing Online

In this section, the experiments done have been performed with 8-way chunking. WT2 warmup
technique is used with the branch predictor and the last level cache being warmed up. For
the task-stealing approach, a task size of 10 million instructions was used.

pe
rlb

en
ch

bz
ip

2
bw

av
es m
cf

gr
om

ac
s

ca
ct

us
AD

M
so

pl
ex

po
vr

ay
hm

m
er

sje
ng

Ge
m

sF
DT

D
lib

qu
an

tu
m

h2
64

re
f

to
nt

o
lb

m
om

ne
tp

p
wr

f
sp

hi
nx

3
Av

er
ag

e

4.0

4.5

5.0

5.5

6.0

6.5

Sp
ee

d-
up

offline online-naive online-taskStealing

Fig. 3. Single threaded benchmarks: Speedup comparison of the different schemes

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:

March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:15

6.2.1 Speedup. Figure 3 shows the speedup achieved by employing the different chunking
techniques. On average, we observed a maximum speedup of 5.39𝑋. This speedup was
observed with the offline approach. This approach achieved the highest speedup across all
the benchmarks. This is as expected, as the offline approach, by design, decomposes the
simulation workload amongst the different chunks equitably.
Online-naive performs worse than the offline approach, offering an average speedup of

4.76𝑋 since it adopts a naive decompostion premise. It disregards the phase-wise changes in
simulation speed, and simply divides the work based on the number of instructions to be
simulated.
Online-taskStealing performs much better than online-naive as the task-stealing

approach helps achieve a near equitable distribution of the simulation workload. It comes
close to the ideal speedup of the offline approach with a speedup of 5.17𝑋 – that is, within
4% of the ideal speedup. Importantly, it achieves this speedup with no prior knowledge of
the benchmark’s behavior, which is a requirement of the offline approach.
Online-taskStealing does not match the speedup of the offline approach because

of three reasons. First, since the tasks have large sizes with millions of instructions, the
workload distribution is not exactly equal. Second, the inter-process communication between
chunks takes some time. Third, and most importantly, the amount of time spent in the
warmup phase is much greater than in the offline approach. This can be explained through
an illustrative example. Let us consider a simple 2-way chunking of a 1 billion-instruction
simulation, while warming up using the WT2 technique. Assume that the offline approach
breaks the simulation into two simulations of 600 million and 400 million instructions, the
number of instructions used for warmup are 600 million (0 instructions for the first chunk,
600 million for the second). Now, let us assume a task-stealing approach with task sizes of
10 million. Let us further assume that the two simulator instances simulate alternate chunks.
This results in the first instance being in the warmup phase for 490 million instructions, and
the second instance for 500 million instructions. Thus, a total of 990 million instructions have
gone through the warmup phase. This additional work done by the task stealing approach
reduces its speedup.

pe
rlb

en
ch

bz
ip

2
bw

av
es m
cf

gr
om

ac
s

ca
ct

us
AD

M
so

pl
ex

po
vr

ay
hm

m
er

sje
ng

Ge
m

sF
DT

D
lib

qu
an

tu
m

h2
64

re
f

to
nt

o
lb

m
om

ne
tp

p
wr

f
sp

hi
nx

3
Av

er
ag

e

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Er
ro

r (
%

)

offline online-naive online-taskStealing

Fig. 4. Single threaded benchmarks: Error comparison of the different schemes

6.2.2 Error. Figure 4 shows the errors observed under the different chunking techniques.
On an average, we observed a maximum average error in simulation of 0.32%, and a maximum

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:16 R. Kalayappan et al.

error of 0.8%. This is meager, and is of the order of the variation typically seen even while
re-executing the application on the same native system. This maximum error was seen
with the online-taskStealing approach. The errors with the other approaches are much
lower. This is expected as the online-taskStealing approach sees many disjoint simulation
phases while the other approaches see contiguous simulation phases. Thus, in the latter,
there are fewer cases of a simulation beginning in a predicted state. In our 8-way chunking
experiments, exactly 7 of the 8 chunks begin execution in a predicted state. Whereas in the
online-taskStealing technique, up to 99 tasks may begin in a predicted state (total tasks
amount to 100).

p
er

lb
en

ch
b
zi

p
2

b
w

av
es

m
cf

g
ro

m
ac

s
ca

ct
u
sA

D
M

so
p
le

x
p
ov

ra
y

h
m

m
er

sj
en

g
G

em
sF

D
TD

lib
q
u
an

tu
m

h
2
6
4
re

f
to

n
to

lb
m

om
n
et

p
p

w
rf

sp
h
in

x3
A

ve
ra

g
e

0
1
2
3
4
5
6
7
8

S
p
e
e
d
-u

p

NumChunks = 2 NumChunks = 4 NumChunks = 8

Fig. 5. Relationship between speedup and number of chunks

pe
rlb

en
ch

bz
ip

2
bw

av
es m
cf

gr
om

ac
s

ca
ct

us
AD

M
so

pl
ex

po
vr

ay
hm

m
er

sje
ng

Ge
m

sF
DT

D
lib

qu
an

tu
m

h2
64

re
f

to
nt

o
lb

m
om

ne
tp

p
wr

f
sp

hi
nx

3
Av

er
ag

e

0.00

0.25

0.50

0.75

1.00

1.25

Er
ro

r (
%

)

NumChunks = 2
NumChunks = 4

NumChunks = 8 NumChunks = 16

Fig. 6. Relationship between error and number of chunks

6.2.3 Analysis of Number of Chunks. We performed experiments to study how the speedup
scales and how the error is affected when we increase the number of chunks. Figure 5 shows
the scaling of the speedup. Note that the offline technique was used in these studies. We
see that the speedup increases with increasing the number of chunks, but the relationship is
sub-linear. This is because as the number of chunks increases, the pressure on the shared

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:17

resources such as the shared last level cache and the bus to the memory increases. Thus, we
do not see the full gains expected on increasing the degree of chunking. When increased to a
16-way chunking, we witnessed a slowdown in the simulation time due to the high levels of
contention for the various shared resources.
Figure 6 shows the effect on the simulation error. With an increase in the number of

chunks, the error increases as expected. This is because a larger number of instructions are
now executed with an approximate processor state.

p
er

lb
en

ch
b
zi

p
2

b
w

av
es

m
cf

g
ro

m
ac

s
ca

ct
u
sA

D
M

so
p
le

x
p
ov

ra
y

h
m

m
er

sj
en

g
G

em
sF

D
TD

lib
q
u
an

tu
m

h
2
6
4
re

f
to

n
to

lb
m

om
n
et

p
p

w
rf

sp
h
in

x3
A

ve
ra

g
e

4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

S
p
e
e
d
-u

p

chunk size=1M

chunk size=5M

chunk size=10M

chunk size=20M

chunk size=40M

Fig. 7. Relationship between speedup and task size

p
er

lb
en

ch
b
zi

p
2

b
w

av
es

m
cf

g
ro

m
ac

s
ca

ct
u
sA

D
M

so
p
le

x
p
ov

ra
y

h
m

m
er

sj
en

g
G

em
sF

D
TD

lib
q
u
an

tu
m

h
2
6
4
re

f
to

n
to

lb
m

om
n
et

p
p

w
rf

sp
h
in

x3
A

ve
ra

g
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
rr

o
r

(%
)

chunk size=1M

chunk size=5M

chunk size=10M

chunk size=20M

chunk size=40M

Fig. 8. Relationship between error and task size

6.2.4 Analysis of Task Size in the Task Stealing Approach. In the online task-stealing
approach, we varied the size of the tasks and studied its effects on the speedup and the
error. Figure 7 shows the variation in the speedup. As expected, as the task size increases,
the observed speedup decreases. The larger granularity hinders the equitable distribution of
the workload. With a task size of 1 million instructions, an average speedup of 5.26𝑋 was
observed (within 2.4% of the offline approach).

Figure 8 shows the variation in the simulation error. Again, as expected, the error reduces
with an increase in the task size. This is because with a larger task size, there are longer

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:18 R. Kalayappan et al.

contiguous sequences of simulated instructions, and consequently, the number of instructions
simulated at a predicted state are fewer. With a task size of 40 million instructions, an
average error of 0.24% was observed.
We find a task-size of ten million instructions gives a good trade-off between speedup

(5.17𝑋) and error (0.32%), and use this for all the other experiments.

6.3 Multi-Threaded Workloads

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

st
re

am
clu

st
er

sw
ap

tio
ns

av
er

ag
e

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

d-
up

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro

r
Fig. 9. Multi-threaded benchmarks: Offline Approach

6.3.1 Offline Approach. We studied the efficacy of the offline chunking scheme (8-way
chunking) while simulating parallel benchmarks from the PARSEC benchmark suite [2].
Figure 9 shows the results. An average speedup of 3.72𝑋 was observed, and the average
error was 0.32%.

6.3.2 Online Approach. We studied the performance of the online chunking scheme
(8-way chunking) for simulating parallel benchmarks. We chose 𝑄 = 107, 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = 5
(see Section 4.3) for these studies. Figure 10 shows the results.

The average speedup was 2.53𝑋. The benchmark streamcluster could not be sped up.
As discussed in Section 4.3, we first perform sampling to determine task definitions, and then
proceed with chunking. However, with streamcluster, a stable phase was not recognized.
The relative throughputs of the different threads varied too frequently for our scheme to
define a task. Hence, the entire simulation was performed by a single Simulator instance,
leading to no speedup, and also no error. The benchmark canneal has a brief phase of
inconsistent relative thread throughputs, before settling down in a stable phase. Our scheme
simulates the inconsistent phase using a single Simulator instance, and the larger consistent
phase using eight Simulators.
The average error observed was 0.6%. Note that when a chunk begins executing, 16

threads (each benchmark has 16 threads) begin from a predicted core state. This increases

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:19

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

st
re

am
clu

st
er

sw
ap

tio
ns

av
er

ag
e

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d-
up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Er
ro

r

Fig. 10. Multi-threaded benchmarks: Online Approach

the amount of error induced. This is the reason behind the larger error shown by some
benchmarks like fluidanimate.

6.4 Evaluation of Warmup Techniques

W
T2

_B
P_

LL
C_

L2
W

T2
_B

P_
LL

C_
L2

_L
1d

W
T2

_B
P_

LL
C

W
T1

_1
00

M

W
T2

_L
LC

_o
nl

y

W
T2

_B
P_

on
ly

W
T1

_1
M

W
T1

_1
0k

W
T2

_L
1i

_o
nl

y

W
T2

_L
2_

on
ly

W
T2

_L
1d

_o
nl

y

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Sp
ee

d-
up

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Er
ro

r

Fig. 11. Comparison of different warmup alternatives

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

39:20 R. Kalayappan et al.

Figure 11 shows the comparison between different warmup schemes in terms of speedup and
error. WT1 X is used to denote that warmup technique WT1 was employed for X instructions.
WT2 X is used to denote that warmup technique WT2 was employed for all the structures
listed in X. The 8-way offline chunking scheme was employed to simulate the SPEC suite
of benchmarks.

6.4.1 Different warmup sizes of WT1. As expected, the speedup decreases as the warmup
size 𝑊 increases (see Figure 11).

Warmup sizes of both 10k instructions and 1M instructions resulted in large errors. Though
the average errors are not alarmingly large, – 1.23% for a 10k warmup and 1.07% for a 1M
warmup – errors as large as 5% were observed in some benchmarks (sphinx3 benchmark,
10k warmup). This is because, as discussed earlier, the processor state in these benchmarks
is determined by a much larger window of instructions – instructions that executed more
than 1M instructions ago determine the processor state. Warming up for 100M instructions
brings down the error to acceptable levels, but results in huge reduction in speedup – a mere
3.32𝑋.

6.4.2 Comparison of different WT2 variants. The warmup strategy WT2 gives us a better
balance of speedup and error. The best configuration was when the branch predictor and
the last level cache were chosen for warmup. The speedup was 5.39𝑋 while the error was
0.2%. This is significantly better than any of the WT1 alternatives.

6.4.3 WT2 for parallel benchmarks. When warming up for parallel benchmarks, we found
that the branch predictor and the LLC aside, warming up the coherence directory helped
reduce the simulation error by 1% on average. Additionally, it is necessary to simulate the
interactions between threads – barriers, acquiring and releasing of locks, etc. – during warm
up, to ensure correct interactions between threads during regular simulation. Taking the
case of barriers, during warmup, the simulator records the arrival of threads at a barrier.
This is important because the start state for simulation could be one where some threads
have reached the barrier and others have not. If we do not simulate barriers during warm
up, then during actual simulation, it is possible that the benchmark threads synchronize
on non-corresponding barrier invocations, leading to significant amount of error being
introduced.

6.5 What-if Analysis

In the offline approach, a reference run is employed to decide on the chunk boundaries.
However, this works best only when the simulation to be performed is with the same
architectural configuration as the reference run. Simulating a different configuration may
lead to sub-optimal splitting, resulting in reduced speedup. Since architecture research
typically involves studying multiple processor design points, we evaluate the efficacy of the
guided approach in the face of changing processor configurations.
To the base configuration described in Table 1, we introduced five changes to give five

different configurations: (1) bimodal-BPred: the branch predictor was changed from a TAGE
predictor to a simple bimodal predictor, (2) small-ROB: the reorder buffer size was reduced
from 168 to 128, (3) tournament-BPred: the branch predictor was changed to a tournament
predictor composed of a PAg and a PAp predictor, (4) 64kB-L1d: the L1 data cache size was
increased from 32kB to 64kB, (5) 4assoc-L3: the L3 cache associativity was decreased from
8-way to 4-way. We performed offline chunking of these five configurations using a reference
run based on the configuration described in Table 1.

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:

March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:21

sa
me-r

ef
bim

od
al-

BP
re

d
sm

all
-R

OB
to

ur
na

men
t-B

Pr
ed

64
kB

-L1
d

4a
ss

oc
-L3

4.0

4.5

5.0

5.5

6.0
Sp

ee
d-

up

Fig. 12. What-if analysis

The resultant average speedups, across the SPEC suite, is as shown in Figure 12. The first
bar same-ref denotes the average speedup obtained when the offline chunking approach is
done with the same architecture configuration as the reference run. Thus, this bar serves as
a reference. It can be seen that the losses in speedup in each of the different configurations
is minimal. Thus, the offline approach, that is guided by a reference run, can be a useful
simulation performance improving tool, when the configurations being explored have modest
differences as compared to the reference run.

7 RELATED WORK

A large community of researchers work on increasing the speed of simulation, given the
importance of Simulators in architecture research.

The first class of solutions involves sampling – representative portions of the benchmark are
ascertained, and only these are simulated at the cycle-level. The statistics are extrapolated to
give the picture of the entire benchmark. One way of doing sampling is through a stand-alone
analysis of the benchmark. In this analysis phase, the benchmark is executed in its entirety,
and representative portions and their “weights” are identified. Weights refer to the fraction of
the execution that behaved in a manner captured by the representative portion. Simpoint [10]
is a popular tool that provides such an analysis of benchmarks. It uses the SimpleScalar [4]
Simulator to analyze the behavior of the benchmark. Pinpoints [9] is a tool by Intel, based
on the Intel Pin instrumentation tool. It categorizes portions based on the methodology
specified by the authors of Simpoint. Once such representative portions are identified, then
during simulation, only these portions may be simulated, and the statistics appropriately
weighted.

Another way of performing sampling is without a standalone analysis phase. We may
perform cycle-level simulation of a portion, and then skip detailed simulation of all successive
portions until some rare, phase-changing, event takes place, say for example, a last-level
cache miss. All the skipped portions are expected to display behavior similar to the simulated
portion. Such an approach is followed by the Simulator Sniper [5].

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:

March 2018.

39:22 R. Kalayappan et al.

The second class of solutions is applicable when the workload is a parallel benchmark or a
bag-of-serial-tasks. Each thread or task is simulated by a separate thread of the simulator.
Since the action of cores and private caches are largely independent of each other, the
simulation of the threads can run independently of each other in these phases. However,
when shared elements like the shared caches, the network-on-chip, the directory and the main
memory controllers have to be accessed, the simulator threads have to synchronize with each
other. This synchronization affects the speed-up achieved through parallelization. Various
strategies exist to bring down this penalty. Such an approach is adopted by Sniper [5],
SlackSim [6], as well as the parallel version of the Tejas Simulator used in this work,
ParTejas [7].

This family of solutions is similar in spirit to Parallel Discrete Event Simulators (PDES)
where different components or modules or sub-systems are simulated in parallel, occasionally
exchanging information. The parallel architectural simulators discussed above typically have
disjoint subsets of target processor cores simulated by each parallel simulator instance.
A third class of solutions is to employ analytical models for structures deemed to have

predictable behavior. Such an approach is adopted by ZSim [11], and a variant of Sniper [5].
In ZSim, the focus is on memory requests that reach the lower levels of the cache, which
trigger the coherence protocols as well as shared resources like the last level cache. These
portions are modeled in detail, while the working of the processor’s compute core is modeled
analytically.

Our approach can be used in conjunction with all of the above classes, providing a further
increase in the simulation speed. For instance, when a sampling based approach is being used
to reduce the number of instructions simulated, our proposed technique may be employed to
reduce the time taken to simulate each sample. Similarly, when analytical models are used to
approximately simulate some of the microarchitectural structures, our proposed algorithms
may be used in conjunction to reduce the time taken for this approximate simulation.
Our approach involved decomposing the simulation of a single thread of the benchmark

into contiguous chunks of instructions. This approach was first proposed by Nguyen et
al. [8]. The authors recognized the error introduced because of the invalid architectural
state that each chunk’s simulation begins from. They proposed to have an overlapping of
successive chunks, essentially resulting in the structures being warmed up according to the
technique WT1 (see Section 5.1). Although this reduces the error for some benchmarks, it
is still quite high for others, as seen in our evaluation (Section 6.4). To bring the error
down for all benchmarks, massive overlaps are required, that reduce the achieved speedup
greatly. We proposed a novel warmup technique WT2(see Section 5.2) that dramatically
brings down the error with little loss in performance. Nguyen et al. also did not address
the issue of sub-optimal chunking that arises out of equal-sized chunks – that is, equal in
terms of the number of instructions. Since the speed of simulation depends upon the nature
of the workload, equal-sized chunks results in sub-optimal speedup. We address this issue
by proposing two techniques – an offline approach that requires a reference simulation run
(Section 3), and an online task-stealing based approach that requires no aprioiri knowledge
(Section 4).

8 CONCLUSION

The performance and correctness of an architectural simulator is very important in deter-
mining the quality and timeliness of the research done using it. In this work, we revisit an
elegant technique of chunking the simulation workload, and simulating the resultant chunks
on separate cores. There were issues with both large simulation error and low achieved

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

ChunkedTejas: A Chunking-based Approach to Parallelizing a Trace-Driven Architectural
Simulator 39:23

speedup in the original proposal. We solved these in this paper through novel simulation
techniques. These techniques enable us to increase the speed of simulating single-threaded
workloads. Average speedups of up to 5.39𝑋 were demonstrated (using 8-way chunking),
while ensuring the error is a mere 0.2%, which is well within the jitter normally seen in
repeated runs even on the native machine. We were also able to increase the performance of
parallel benchmarks by 3.72𝑋 on average.

REFERENCES

[1] [n. d.]. Pin - A Dynamic Binary Instrumentation Tool. ([n. d.]). http://www.pintool.org
[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite: characterization and

architectural implications. In PACT.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu,
Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator.
ACM SIGARCH Computer Architecture News 39, 2 (2011), 1–7.

[4] Doug Burger and Todd M Austin. 1997. The SimpleScalar tool set, version 2.0. ACM SIGARCH
computer architecture news 25, 3 (1997), 13–25.

[5] T.E. Carlson, W. Heirman, and L. Eeckhout. 2011. Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation. In SC.

[6] Jianwei Chen, Murali Annavaram, and Michel Dubois. 2009. SlackSim: a platform for parallel simulations

of CMPs on CMPs. ACM SIGARCH Computer Architecture News 37, 2 (2009), 20–29.
[7] Geetika Malhotra, Rajshekar Kalayappan, Seep Goel, Pooja Aggarwal, Abhishek Sagar, and Smruti R

Sarangi. 2017. ParTejas: A parallel simulator for multicore processors. ACM Transactions on Modeling

and Computer Simulation (TOMACS) 27, 3 (2017), 19.
[8] A-T Nguyen, Pradip Bose, Kattamuri Ekanadham, Ashwini Nanda, and Maged Michael. 1997. Accuracy

and speed-up of parallel trace-driven architectural simulation. In Parallel Processing Symposium, 1997.

Proceedings., 11th International. IEEE, 39–44.
[9] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand Karunanidhi. 2004.

Pinpointing representative portions of large Intel® Itanium® programs with dynamic instrumentation.

In Proceedings of the 37th annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 81–92.

[10] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. 2003.
Using SimPoint for accurate and efficient simulation. In ACM SIGMETRICS Performance Evaluation

Review, Vol. 31. ACM, 318–319.

[11] D. Sanchez and C. Kozyrakis. 2013. ZSim: fast and accurate microarchitectural simulation of thousand-
core systems. In ISCA.

[12] Smruti R Sarangi, Rajshekar Kalayappan, Prathmesh Kallurkar, Seep Goel, and Eldhose Peter. 2015.

Tejas: A java based versatile micro-architectural simulator. In Power and Timing Modeling, Optimization
and Simulation (PATMOS), 2015 25th International Workshop on. IEEE, 47–54.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date:
March 2018.

http://www.pintool.org

	Abstract
	1 Introduction
	2 Background
	2.1 Trace-driven Cycle-level Simulators
	2.2 Chunked Simulation
	2.3 Contributions of this Work

	3 Offline Chunking
	3.1 Methodology
	3.2 Limitations of an Offline Approach

	4 Online Chunking
	4.1 Naive Approach
	4.2 Task-Stealing Approach for Serial Workloads
	4.3 Online Chunking for Parallel Workloads

	5 Warmup Techniques
	5.1 WT1: Fast-Forward, followed by Full Functional Warmup
	5.2 WT2: Structures-X-only

	6 Evaluation
	6.1 Evaluation Set-up
	6.2 Single Threaded Workloads: Offline v/s Naive Online v/s Task-Stealing Online
	6.3 Multi-Threaded Workloads
	6.4 Evaluation of Warmup Techniques
	6.5 What-if Analysis

	7 Related work
	8 Conclusion
	References

