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ABSTRACT
Computer architects continue to explore newer ways to provide the
abstraction of a large but fast memory to the processor. This work
proposes a memory system that achieves this abstraction using a
hybrid cache – a combination of an SRAM array and a Spin-Transfer
Torque Magnetic RAM (STTRAM) array, at the highest level (L1)
of the memory hierarchy. We overcome the issue of longer access
latency of STTRAM arrays by placing those cache lines which
are likely to be accessed by a critical load instruction (or delay-
sensitive loads) into the SRAM array. Our characterization of the
CPU SPEC2017 benchmarks shows that most load instructions are
tolerant to access latency of STTRAM array, which makes a small
(but fast) SRAM array amenable. The higher densities and lower
leakage power of the STTRAM array also make it amenable to
provision for larger capacity without significant area overhead.
Through extensive simulations of SPEC2017 benchmarks, we show
that a combination of a small but fast SRAM array, and a large
STTRAM array yields an average performance gain of up to 6.1%
when compared to a baseline system that uses only an SRAM-array-
based cache of similar area. This performance improvement comes
at a cost of a 1.7% increase in the energy consumption of the private
caches.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Hard-
ware → Emerging architectures; Spintronics and magnetic
technologies; Very large scale integration design.
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1 INTRODUCTION

The gap in processor computation speeds and memory access
times, better known as the Memory Wall, continues to exist even
after several decades of research in this direction. Several advances
in processor micro-architecture, such as caching, prefetching, mem-
ory pipelining, and way/bandwidth partitioning, try to bridge this
gap by providing an abstraction of a large yet fast memory store to
the processor core.

The introduction of Non-Volatile Memories (NVMs), such as
Spin Transfer Torque Random Access Memory (STTRAM), has
opened new opportunities to architect a memory hierarchy that
supports this abstraction because the higher density and lower
leakage power of STTRAM help increase the capacity of caches. A
straightforward replacement of SRAM arrays with STTRAM arrays
is not feasible because STTRAM cells suffer from two problems
(elaborated in Section 2): (i) reads and writes take longer as com-
pared to traditional Static RAM (SRAM) cells (with writes taking
longer than reads), and (ii) writes consume more dynamic energy
as compared to SRAM cells. A prominent approach to overcome
these limitations is to use STTRAMs at lower levels of the memory
hierarchy where the accesses are fewer and access latencies are
typically higher. This is further extended by combining the high-
capacity STTRAM cache banks with SRAM cache banks to create
hybrid caches. The SRAM bank helps reduce the dynamic energy
consumed by holding write-intensive cache lines. A state-of-the-art
technique under this approach also avoids writing dead (brought to
the cache but never used) cache lines into the STTRAM bank [27].
An orthogonal approach is to employ a reduced retention STTRAM
caches which require complex refresh mechanisms, but provide for
lower access latency and energy [24].

In this work, we propose a novel hybrid cache, called Criticality
Aware Split Hybrid cache (CASH), that makes it amenable for use at
the L1 level. Our proposed hybrid cache consists of two partitions: (i)
𝑃0 - partition implemented using SRAM array, and (ii) 𝑃1 - partition
implemented using STTRAM array. The 𝑃0 partition will hold only
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those cache lines that are likely to be accessed by critical load
instructions – delaying these load instructions will increase the
execution time of the application, and the 𝑃1 partition will hold
cache lines that are likely to be accessed by delay-tolerant load
instructions.

Our characterization of the SPEC CPU2017 (elaborated in Sec-
tion 3) shows that the number of load instructions that have a
global slack lesser than the access latency of a STTRAM array is
small. The global slack of an instruction is the number of cycles
it can be delayed without extending the completion time of the
application [9]. This observation makes it amenable to use a 𝑃0 par-
tition that is smaller than a traditional SRAM-based L1 cache, which
reduces the access latency of the SRAM portion. This improves the
application’s performance by servicing critical load instructions
faster. The higher density and lower leakage power of STTRAMs
help implement a 𝑃1 partition of a similar capacity as a traditional
SRAM-only cache in a lesser area. Therefore, our hybrid L1 cache
offers a higher cache capacity while occupying a similar area.

Through extensive experimentation on the CPU2017 bench-
marks, we show that our proposed hybrid L1 cache offers an average
performance improvement of 6.1% with a modest increase in en-
ergy consumption of 1.7% as compared to an SRAM-only cache
occupying a similar area, thereby achieving the abstraction of a
fast (for critical loads) yet large (for delay-tolerant loads) memory
store.

2 BACKGROUND AND RELATEDWORK
2.1 STTRAM based on-chip caches
STTRAM is a promising memory technology for building on-chip
caches [1, 5] because it offers two primary advantages over con-
ventional SRAM: (i) higher density (> 3𝑥) and (ii) lower leakage
power consumption (< 0.05𝑥 ). These advantages enable the incor-
poration of high-capacity on-chip caches that reduce the number
of misses, thereby increasing the overall performance. Several aca-
demic proposals [13, 25, 27], prototypes, and commercial offerings
have since used STTRAM-based on-chip caches at all levels of the
cache hierarchy from the L1 level [16, 17, 20] to the Last Level
Cache (LLC) [15, 26, 27]. However, some challenges arise as the
technology nodes scale to smaller sizes (less than 32𝑛𝑚).

2.1.1 The issue with read operations. With scaling to sizes smaller
than 32nm, the current required to read an STTRAM cell has stayed
steady. The increasing effect of process variation on both the mag-
netic tunnel junctions (MTJs) and the CMOS transistors degrades
the sensing margin, requiring a large current for a correct and quick
reading of the cell contents. However, using a large read current
may lead to accidental modification of the cell contents because
with scaling, the MTJ critical switching current has reduced. This is
termed a Read Disturbance Error (RDE) [7, 12, 14, 17, 18, 26, 28]. This
has led researchers to believe that readability, rather thanwritability,
forms the ultimate bottleneck in STTRAM-based systems [14, 28].

There are traditionally two techniques to handle this situation.
The first is termed Low Current Long Latency (LCLL) and uses a low
current over a long sensing period to perform the read operation.
Since a low current is employed, RDEs do not occur. However, the
read latency increases. The second traditional technique is termed

High Current Restore Required (HCRR). HCRR uses a high current
to perform the read operation that could cause an RDE. But, the
cell’s content is then immediately written back or restored, thereby
undoing the effect of any RDE. Though the high current allows
the read operation to complete faster than in the case with a low
read current, the subsequent restore operation delays subsequent
reads. In many applications, the overall performance with a high
read current is actually lower than that with a low read current.
Additionally, the read operation is quite expensive in terms of en-
ergy due to the restore operation [26]. In summary, regardless of
the technique used, the cell read latency in an STTRAM cache is
usually much higher than that in an SRAM cache [6].

Selective restoration [18, 26] may be employed to reduce the
overhead of HCRR. The system may switch between HCRR during
periods of low activity and LCLL during periods of high activity [12].
Differential sensing may be employed to reduce the read current,
thereby reducing the chance of an RDE. Since this approach requires
both the datum and its complement to be stored, it halves the
capacity of the cache and doubles the power consumed [14, 17].
Our proposal is an architecture-level approach that is orthogonal to
all of the prior work. We propose a hybrid SRAM-STTRAM cache,
with the STTRAM partition operating in an LCLL fashion, and
being used to service read requests that are delay-tolerant from an
application’s point of view.

Since the STTRAM cell occupies a lesser area than the SRAM cell,
the size of the interconnects within the cache is smaller. Therefore,
signals have to travel shorter distances. This offsets the high cell-
read latency in STTRAM caches to some extent in large-capacity
caches. However, the cell-read latency dominates in the case of
small-capacity caches [7] such as those used at the L1.

2.1.2 The issue with write operations. STTRAM caches have large
write latencies and write energies because a large amount of current
has to be applied for a significant duration to perform a write
operation (the magnetic direction of the free layer of the MTJ needs
to be set/reset to a particular direction).

A circuit-level approach to reduce the write energy is to useMTJs
with lower thermal stability to implement the cache. Although this
enables cells to be written to using a lower current [24], these cells
have lower retention times. Therefore, such caches require refresh
mechanisms to maintain correctness (similar to DRAMs), which
can be expensive [15].

There are two architecture-level approaches to reduce write en-
ergy. The first approach is to reduce the number of write operations.
This is typically done by identifying the lines with low reuse and
not placing them in the cache. Another technique is to use an aux-
iliary buffer that combines temporally local writes to the same line
to a single write [2, 15]. The second approach is to employ hybrid
caches [8, 27]. The state-of-the-art hybrid cache APM [27] prefer-
entially places write-intensive lines in the SRAM partition and does
not cache lines that have no reuse (dead lines). Our work adopts
the spirit behind the heuristics proposed in APM but customizes
the design of deadness and write-intensity predictors to make it
suitable for use at L1 (instead of LLC as proposed). We evaluate our
work against the original APM for reference.
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Figure 1: Criticality distribution of load instructions

2.2 Instruction Criticality and the Fields Model
Delays in execution of some instructions on an out-of-order pro-
cessor may affect the performance of an application more than
other instructions. The seminal work on identifying such critical
instructions models the execution of an application as a graph [10].
Here, each dynamic instruction is represented by three nodes that
correspond to its Dispatch (D), Execute (E), and Commit (C). Edges
between nodes represent constraints (both hardware and software)
in the latter’s schedules. An edge 𝑖 𝑤−→ 𝑗 indicates that node 𝑗 can
be scheduled only𝑤 cycles after 𝑖 . The As-Soon-As-Possible (ASAP)
schedule and the As-Late-As-Possible (ALAP) schedule of all the
nodes are then calculated. The application’s deadline, or the maxi-
mum duration of the ASAP schedule is used to compute the ALAP
schedule. The difference of these schedules at each node indicates
the global slack of that node [9]. This slack of a node indicates
the duration for which it can be delayed without affecting overall
execution time.

Several works have used instruction criticality to optimize vari-
ous micro-architectural structures such as instruction issue logic
and cache management [4, 19]. In this work, we employ an imple-
mentation of the aforementioned model to identify critical instruc-
tions [19]. All the load instructions tagged as non-critical by this
implementation are serviced from the 𝑃1 partition (LCLL STTRAM
bank).

3 CRITICALITY CHARACTERIZATION
Figure 1 shows the percentage of load instructions in each bench-
mark that have a global slack greater than the slack shown along the
x-axis. We notice that over 60% of load instructions in 16 out of 19
SPEC2017 benchmarks have a global slack of at least 8 cycles (which
is the typical access latency of a 32𝐾𝐵 STTRAM based cache). This
large fraction of delay-tolerant loads presents us with an opportu-
nity for employing an STTRAM-based L1 cache. These results are in
line with the observations made in prior work [4]. Therefore, if the
small fraction of critical load instructions are accelerated, and the
latency of the remaining load instructions is kept within reasonable
limits, then we stand to achieve large performance gains.

For the next study, we first determine the criticality (global slack
< 8) of each load instruction that accessed a particular cache line.
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Figure 2: Criticality distribution of data lines

Then we categorize the cache lines into bins based on the fraction of
critical accesses to them. We plot the histogram of the percentage of
cache lines in each bin for all the 19 SPEC2017 benchmarks. Figure 2
shows this histogram. For example, the bin 1 − 10% critical shows
the number of L1D cache lines which were accessed by non-critical
load instructions over 90% of the time.

We observe that across all benchmarks, only ≤ 20% of L1D cache
lines were accessed often (over 80%) by load instructions that were
critical. This motivates the case for having a small but fast SRAM
partition. We also observe that in 11 out of 19 benchmarks, over
50% of the cache lines accessed were solely accessed by non-critical
loads (bin 0). This motivates the case for a relatively larger but a
slower STTRAM partition.

4 SPLIT HYBRID CACHE ARCHITECTURE
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Figure 3: Design of the proposed Criticality-Aware Split Hy-
brid Cache (CASH) at the L1 level

Cache structure: Figure 3 shows the high-level architecture of
our proposed Criticality-Aware Split Hybrid Cache (CASH). It has
two partitions: (i) low latency, low capacity SRAM partition, called
𝑃0, and (ii) longer latency, high capacity STTRAM partition, called
𝑃1. The SRAM partition (𝑃0) is smaller (16𝐾𝐵) as compared to that
of the traditional cache (32𝐾𝐵). This helps reduce the access latency
of the SRAM partition to 3 cycles (3𝑐) as compared to the base case
of 4𝑐 . The STTRAM partition (𝑃1) is of the same capacity as the
traditional cache (32𝐾𝐵). Since the density of STTRAMs is over
twice that of SRAM, the 𝑃1 partition occupies less than half the area
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of the SRAM arrays of the traditional cache [13, 25, 27]. Thus, there
is enough space to accommodate the two partitions and the addi-
tional logic and structures for managing the two partitions without
incurring any area overhead as compared to a traditional SRAM-
based L1 cache. The CASH controller has a Status Holding Register
(SHR) that can hold a maximum of sixteen entries. Each SHR entry
corresponds to one ongoing pipeline request. Each entry contains
the following fields: (i) the type of request (read/write/prefetch),
(ii) word address, (iii) word value (relevant only for stores), (iv)
𝑃0 status (waiting for port/searching/miss), and (v) 𝑃1 status. The
controller also has a Line Write Buffer (LWB). The LWB contains
twenty entries, one entry for each line waiting to be written to any
one of the L1 partitions. The line could have originated from the L2,
or may have originated from 𝑃1 to be written to 𝑃0 (termed a “line
migration”, which is discussed ahead). Each LWB entry contains
the following fields: (i) address, (ii) line contents, (iii) destination
partition (𝑃0/𝑃1), and (iv) status (waiting for port/writing).

The 𝑃0 and 𝑃1 partitions are maintained in a strictly exclusive
manner. This removes the need for any coherence mechanism be-
tween the two partitions, thereby simplifying the control logic.
Such exclusivity of cache lines also increases the effective capacity
of the proposed cache as compared to the traditional cache (48𝐾𝐵
as compared to 32𝐾𝐵). Further, we assume that the private L1 cache
follows the Write-Through Write-No-Allocate policy, while the
private L2 cache follows the Write-Back policy.

Cache access: The pipeline waits until there is space in the
SHR and the LWB before it issues a request to the L1 cache. Upon
receiving a request from the pipeline, the CASH controller initiates
a lookup in both the partitions, as well as the LWB. If the requested
data is found in 𝑃0 or the LWB, the lookup in 𝑃1 is aborted. If the
requested data is not present in 𝑃0, then a request is immediately
sent to the L2 cache (even before the completion of the lookup in 𝑃1).
Additionally, if it is read request, then the L1 prefetcher is exercised.
If the requested data is found in 𝑃1, then a request to abort the
search is sent to L2. Since modern cache operations are usually
pipelined in a lock-up free manner, such an abort mechanism is
easily realised [11].

Cacheline placement, eviction, andmigration: As motivated
earlier, the idea is to place lines that serve critical loads in the fast
𝑃0 partition, and those that serve non-critical loads in the slower 𝑃1
partition, thereby increasing overall performance. However, care
must be taken to reduce the number of write operations in 𝑃1
because of its high dynamic write energy. The chosen L1 policies
must also not unduly increase the number of L2 accesses (including
both demand and prefetch) as this will again increase the energy
consumption since the L2 is a larger cache.

When a line L arrives from the L2 level, the three predictors –
Cacheline Criticality Predictor (CCP), Cacheline Deadness Predic-
tor (CDP), and Cacheline Write-Intensity Predictor (CWP) – are
accessed to predict the criticality, deadness, and write-intensity of
L respectively. These predictions are then used according to the
procedure PlaceLine() in Algorithm 1 to place L in the L1 cache.

Whenever a line is evicted from either partition, it is discarded
as the L1 level follows a Write-Through policy. We also adopt a
line migration strategy as given by MigrateOnHit_𝑃1_to_𝑃0 in
Algorithm 1. This is expected to help the cache contents adapt to
changing program phases.

def PlaceLine(L):
if L is dead then

bypass the L1 cache;
else

if L is critical then
place L in 𝑃0;

else
if L is write-intensive then

bypass the L1 cache;
else

place L in 𝑃1;
end

end
end

def MigrateOnHit_𝑃1_to_𝑃0():
if access to line Lℎ

1 hits in 𝑃1
and Lℎ

1 is not dead and
((access is a write and Lℎ

1 is write-intensive)
or (Lℎ

1 is critical)) then
migrate Lℎ

1 to 𝑃0;
end

Algorithm 1: Placement and migration policies in CASH

Whenever a line needs to be placed in any of the partitions, it
is first staged in the LWB until a write port in the corresponding
partition is available. If there is no place in the LWB, then the
placement is not attempted.

Design of the predictors: The CCP’s design is inspired by
the criticality predictor employed by Nori et al. [19]. Whenever an
instruction commits, an entry is made in a post-commit buffer. Each
entry contains information to capture the three nodes – Dispatch,
Execute, and Commit – as described in Section 2.2. When the buffer
is half full, the contents are processed to determine the global slack
of (the E nodes of) each instruction. For each load instruction, if the
global slack is less than the threshold (latency of the 𝑃1 partition),
then the load is deemed critical, else, it is not. A 2048-entry predictor
table, that is indexed by the line address of the line being accessed by
the load instruction, is trained accordingly. We employ the counter
model as prescribed by Fields et al. [10]. Once trained, this half of
the post-commit buffer is discarded. A sampling-based approach is
employed, and so if at commit time the buffer is found to be full,
no entry is made. The committing of instructions never stalls. The
area of the CCP is 5𝐾𝐵. It is worth noting that the components of
the CCP can be used to guide a variety of policies in addition to
those in the hybrid cache controller such as instruction steering,
scheduling, and prefetching [4, 19].

The CDP and the CWP are designed as done in APM [27], but
with smaller dimensions. A pattern simulator unit (32-set, 6-way
read, 2-way write) is employed to dynamically study the access
patterns that the different lines in the cache are going through. Ac-
cordingly, dedicated predictor tables (1024 entries; 2-bit saturating
counters) for deadness and write-intensity are trained. The area of
the CDP and the CWP together is 1.4𝐾𝐵.
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Table 1: Simulation Parameters

Base processor
microarchitecture Intel Kaby Lake
L1 i-cache SRAM, 32KB, 8-way, 4c lat
Base L1 d-cache SRAM, 32KB, 8-way, 4c lat, 0.5c/access B/W
L2 cache (unified) SRAM, 256KB, 4-way, 12c lat, 0.5c/access B/W
L3 cache (unified) SRAM, 4MB, 16-way, 44c lat, 2c/access B/W
Main memory 132c latency

Hybrid L1-d cache
𝑃0 SRAM, 16KB, 8-way, 3c lat, 0.5c/access B/W
𝑃1 STTRAM, 32KB, 8-way,

8c read lat, 4c/read B/W; 105c write lat, 4c/write B/W
Relative energy parameters (relative to 32KB SRAM cache)

Cache dyn energy /read dyn energy /write leakage energy /ns
16KB SRAM 0.758 0.758 0.678
32KB SRAM 1.000 1.000 1.152
256KB SRAM 5.688 5.688 10.715
32KB STTRAM 0.909 36.970 0.053

5 EVALUATION
5.1 Experimental setup
We used the Tejas architectural simulator [21] to evaluate our pro-
posed architecture. The simulation configurations were tuned to
resemble the Intel Kaby Lake architecture. We implemented stride
and stream prefetchers in all caches (including the L1 i-cache). We
integrated the publicly available TAGE-SC-L branch predictor im-
plementation [22] into the simulator. Table 1 gives the details of
the simulation parameters used for evaluating the proposal. The
Cacti-STT [3] tool was used to derive the parameters of the dif-
ferent SRAM and STTRAM caches [7]. For the STTRAM cache
parameters, we have considered the cache to be non-volatile in this
evaluation. We do not explore reduced retention alternatives in
this work although it could give better results provided an efficient
refresh mechanism is incorporated.

We simulated 19 out of the 23 benchmarks of the SPEC CPU2017
benchmark suite. We used the 𝑟𝑒 𝑓 inputs. We determined the rep-
resentative portion of each benchmark using SimPoint [23] and
simulated 100 million instructions from it.

5.2 Results
5.2.1 Performance improvement. We first present the analysis of
the improvement in performance brought about by CASH. Figure 4
shows the observations. On average, CASH achieves an average
performance improvement of 6.1% in the SPEC CPU2017 suite as
compared to the baseline system, with a maximum performance
improvement of 52.5% in the lbm benchmark.

We begin delving deeper by first comparing against a system
that has a 16 KB SRAM L1 cache with a 3 cycle latency (equiva-
lent to 𝑃0 in our proposal). We find that CASH outperforms this
cache in almost all of the benchmarks, and on average as well (see
Figure 4). This indicates that L1 capacity is important for appli-
cation performance. We next consider a hypothetical system that
has a 48 KB L1 cache with a 1 cycle latency. This is a manifesta-
tion of our desired cache with a large capacity and a small latency.
Benchmarks exchange2, imagick, and wrf show no change in per-
formance when run on this hypothetical system, indicating that the
performance of these benchmarks is predominantly determined by

factors other than the L1 cache performance such as branch behav-
ior or structural hazards. Without considering these three bench-
marks, CASH provides an average performance improvement of
7.2%. As seen in Figure 4, CASH also outperforms the hypothetical
< 48𝐾𝐵, 1𝑐 > cache on average. This is because CASH is criticality-
aware and promotes the availability of critical lines closer to the
pipeline (instead of operating on the principle of locality alone).

We additionally compare against the seminal hybrid cache de-
sign APM [27] (see Figure 4), which was designed for the Last Level
Cache. We implemented it at the L1 level, which is made up of a
16 KB, 3 cycle latency SRAM partition, and a 32 KB, 8-cycle read
latency, 105-cycle write latency, STTRAM partition. We present
the results of the experiment which employed a 32-entry pattern
simulator with 6-way read associativity and 2-way write associa-
tivity as this showed the best performance with the lowest energy
consumption. APM chooses to move write-intensive lines away
from the STTRAM partition, and to not cache dead lines in either
partition. However, APM is not cognizant of the STTRAM partition
having a higher read latency than the SRAM partition. As a result,
we find that when APM is directly implemented at the L1 level,
there is an average performance loss of 1.5%. Thus, it is impera-
tive to incorporate some measure like criticality in the policies of
a hybrid SRAM-STTRAM cache to accommodate the higher read
latencies of STTRAM-based caches.

To further understand the impact of having criticality-aware
cache policies, we define a new metric memory access penalty
(MAP):

MAP =

∑
𝑖∈𝑙𝑜𝑎𝑑𝑠𝑚𝑎𝑥 (0, 𝑒𝑥𝑒𝑐𝑖 − 𝑠𝑙𝑎𝑐𝑘𝑖 )

total number of loads

where 𝑒𝑥𝑒𝑐𝑖 and 𝑠𝑙𝑎𝑐𝑘𝑖 are the execution latency and the global
slack of a load instruction 𝑖 respectively. Intuitively, if a lower value
of MAP is observed, it indicates that critical data was often available
closer to the pipeline, which in most cases is expected to translate
to higher performance.

Figure 5 shows the MAP for the baseline system and the system
with CASH at the L1 level. It can be seen that in benchmarks like
fotonik3d, lbm, omnetpp, x264, and xalancbmk, CASH achieved
a significantly lower memory access penalty as compared to the
base case. This translated to significant performance gains (as seen
in Figure 4).

5.2.2 Energy consumption. We next study the relative change in
the energy consumed by the private portion of the data memory
hierarchy (L1 d-cache, L2 cache, and all its associated circuitry).
Figure 6 shows the observations. We observed that, on average
(geomean), CASH consumes an excess of 1.7% energy as compared
to the base system.

We analyze the energy consumption further. We see that CASH
consumes lesser leakage energy (10.1% less) as compared to the
baseline, which is due to two reasons: (1) the 𝑃1 partition being
STTRAM-based consumes low leakage energy, (2) the application
completes execution in lesser time. CASH, however, consumes
greater dynamic energy (29% more). On studying the different com-
ponents of the dynamic energy consumed, we see that although
CASH consumes lesser dynamic energy in the L1 SRAM (24.7%
less; since 𝑃0 is smaller than the base L1 cache), CASH consumes
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Figure 4: Performance evaluation of the proposed split hybrid L1 cache

bl
en

de
r

ca
ct

uB
SS

N

ca
m

4

ex
ch

an
ge

2

fo
to

ni
k3

d

gc
c

im
ag

ick lb
m

le
el

a

m
cf

na
b

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay wr
f

x2
64

xa
la

nc
bm

k xz

Benchmarks

0

2

4

6

8

10

12

M
em

or
y 

ac
ce

ss
 p

en
al

ty

19
.1

16
.9

base CASH

Figure 5: Comparison of theMemory access penalties (MAP) observed in different L1 cache systems

L1
 SR

AM
 dy

na
mic

P1
 co

re
-w

rit
e h

it
P1

 fil
l

P1
 dy

na
mic

L2
 dy

na
mic

to
ta

l d
yn

am
ic

to
ta

l le
ak

ag
e

to
ta

l0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e 

en
er

gy

1.574base
CASH

criticality-only

Figure 6: Breakdown of the average energy consumed (rela-
tive to the total energy consumed in the base case)

more dynamic energy at the L2 level (25.2% more). CASH also
has the 𝑃1 component (15.7% of the total dynamic energy) that is
not present in the base system. Though 𝑃1 is STTRAM-based and
therefore write operations to it are energy-intensive, CASH em-
ploys write-intensity-aware and deadness-aware policies to reduce
the number of writes to this partition (see the bars “P1 core-write
hit” and “P1 fill” in Figure 6), thereby keeping the 𝑃1 dynamic en-
ergy low. Performance is not sacrificed as CASH attempts to keep
lines that have high reuse and that serve critical loads closer to
the pipeline. To study the energy consumption further, we exper-
iment with a version of CASH that is only criticality-aware (see
the red bars in Figure 6), and does not consider the write-intensity
and deadness of blocks. This version of CASH displays an average
energy consumption overhead of 57.4%. It has a large number of
write operations in the 𝑃1 partition – both due to core-writes as
well as due to line placements. This leads to a large 𝑃1 dynamic
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energy consumption (65% of the total dynamic energy). Thus, it is
imperative to take write-intensity and deadness into account while
designing the policies of a hybrid SRAM-STTRAM cache.

6 CONCLUSION
We have proposed CASH – a design of a hybrid SRAM-STTRAM L1
cache that accommodates the higher read latencies of the STTRAM-
based partition by incorporating criticality-aware policies. Such a
criticality-oriented approach enables critical load instructions to
find their data closer to the pipeline, thereby improving perfor-
mance. CASH also accommodates the higher write energy of the
STTRAM-based partition by suitably adapting the state-of-the-art
heuristics of write intensity and deadness to ensure that the number
of write operations to the STTRAM partition are few in number,
and to lines that have high reuse. This helps achieve the desired ab-
straction of a low-latency, high-capacity L1D cache, which exhibits
an average performance improvement of 6.1%, and an average en-
ergy overhead of 1.7%, as compared to a baseline SRAM-only cache
of the same area.
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