
On Decomposing Complex Test Cases for Efficient Post-silicon Validation

Harshitha C1, Sundarapalli Harikrishna1, Peddakotla Rohith1, Sandeep Chandran1, and Rajshekar Kalayappan2

1Indian Institute of Technology Palakkad, India
2Indian Institute of Technology Dharwad, India

{112003002,121901045,121901036}@smail.iitpkd.ac.in, sandeepchandran@iitpkd.ac.in, rajshekar.k@iitdh.ac.in

Abstract— In post-silicon validation, the first step
when an erroneous behavior is uncovered by a long-
running test case is to reproduce the observed behav-
ior in a shorter execution. This makes it amenable
to use a variety of tools and techniques to debug the
error. In this work, we propose a tool called Gru,
that takes a long execution trace as input and gen-
erates a set of executables, one for each section of
the trace. Each generated executable is guaranteed to
faithfully replicate the behavior observed in the cor-
responding section of the original, complex test case
independently. This enables the generated executa-
bles to be run simultaneously across different silicon
samples, thereby allowing further debugging activi-
ties to proceed in parallel. The generation of executa-
bles does not require the source code of the complex
test case and hence supports privacy-aware debugging
in scenarios involving sensitive Intellectual Properties
(IPs). We demonstrate the effectiveness of this tool
on a collection of 10 EEMBC benchmarks that are
executed on a bare-metal LEON3 SoC.

I. Introduction

Recent industry-wide surveys have found very few designs
to achieve first-silicon success [1]. This is because pre-silicon
verification tools and strategies do not scale well with increas-
ing design complexities. This makes post-silicon validation an
indispensable step before a chip enters mass production.

During the post-silicon validation phase, long-running and
complex test cases as well as representative target applications
are executed on early silicon samples to uncover any design
errors (or bugs) that may have been missed by pre-silicon ver-
ification techniques. However, the limited visibility into the
internal functioning of the chip poses a significant challenge
in debugging the erroneous behavior seen. Design-for-Debug
(DFD) structures such as trace buffers are inserted into the
chip during the design phase and exercised during the post-
silicon validation phase to increase such visibility [2, 3]. The
near-native execution speeds offered by the early silicon sam-
ples results in large volumes of execution trace being captured
even for a relatively short executions (of a few ms) [4]. There-
fore, debugging the erroneous behavior observed by analyzing
only the collected traces becomes a tedious and time consum-
ing task.

This work was partly sponsored by Semiconductor Research
Corporation (SRC).

Block 1 Block 2 Block 3 Block N

Block 1

Minions

State Restoration Instructions (SRI)

Block 2 Block 3

Execution Trace
(partitioned into blocks)

Silicon Sample

Complex Test case

Replicated instructions

Fig. 1. Overview of the proposed approach

In this work, we propose a tool called Gru, that decom-
poses a large execution trace and synthesizes a set of smaller
test cases called Minions, from it. A synthesized test case (or
Minion) is guaranteed to replicate the behavior of a small sec-
tion of the complex test case when it is re-executed on the
silicon sample. Such decomposition of the original behavior
offers the following advantages. Each Minion can be executed
independently of the other and hence, further debugging ac-
tivities can proceed in parallel. This could potentially reduce
the time taken to localize the bug. The size of Minions created
by the tool is configurable. This enables synthesis of Minions
that are small enough for their behaviors to be analyzed by
other bug localization and verification tools. Finally, our tool
requires only the execution trace to create Minions. This helps
in replicating errors that were observed at the customer site
without the need for the customer to share any sensitive intel-
lectual properties (IPs) such as the source code or executable
with the validation team.

Figure 1 illustrates our proposed technique. The execution
trace generated by running a complex test case on the silicon
is partitioned into fixed sized Trace Blocks. The instructions
captured in each trace block are replicated in the synthesized
Minion. The replicated instructions will behave exactly as
they did in the complex test case only if the starting state of
each block matches with the corresponding state during the
execution of the complex test case. We insert additional in-
structions, called State Restoration Instructions (SRIs), into
the Minion such that its execution will restore the state of
the chip to the state that prevailed at the start of the cor-
responding trace block. The Minion is crafted in a way that
SRIs execute first and then transfers control to the replicated
instructions after the state is restored.

Execution
Trace

Trace
Decoder

and
Blocking

State Restoration

● GPR Restoration
● PSR Restoration
● Mem. Restoration

replica.s

restore.s
Linker

Minion

Current
Trace
Block

Fig. 2. Steps to generate a Minion

We discuss three techniques to infer the starting state of a
trace block by analyzing the execution traces and elaborate the
strategy to insert state restoration instructions automatically.
Finally, through the execution traces captured by executing
10 EEMBC benchmarks on the bare-metal for 10ms (averag-
ing 369K trace messages occupying 5.6MB), we show that
generating Minions, takes only 6s on average.

II. Related Work

Test case generation has been extensively studied in the past
and several test case generation strategies have been devel-
oped. Several strategies adopt an exploratory approach where
the test cases are generated in a random or pseudo-random
manner [5]. These test generation strategies are fast and can
generate a lot of test cases in a short duration. Although this
helps in verifying large portions the input space, this strat-
egy does not guarantee complete coverage of the input space.
Formal-methods based test generation is another strategy to
generate test cases that uses a model of the underlying system
to direct test generation [6]. This guides test generation to-
wards regions previously unexplored. These works are orthog-
onal to ours. We generate Minions to replicate an observed
behavior and not to expose design errors.

Several works have proposed techniques to localize bugs dur-
ing post-silicon validation using test cases [7–10]. These works
embed self-checks into the test case intelligently. For example,
a block of code is replicated inside the test case, and the results
produced by the two copies of code are checked for equality.
Any mismatch localizes the bugs to a small set of instruc-
tions [7]. Similar approach of replicating code blocks can be
used to check for errors in memory and control flow [8]. Our
work is orthogonal to such bug localization strategies and can
complement them by generating Minions from an execution
trace which can then be transformed suitably.

Our proposed tool positions itself to be the first step in de-
bugging an error observed during post-silicon validation by de-
coupling the replication of erroneous behaviors observed from
localizing and analyzing the root cause of the bug. This paves
the way for using other tools and techniques on each Min-
ion separately (in parallel). For example, the Minions gener-
ated can be executed on an Instruction Set Simulator (ISS) to
obtain the “Golden” end state which can then be compared
against the corresponding on-chip state to localize faulty state
elements [11]. Other strategies such as Run-Pause-Resume
(RPR) [12] can also be used on each Minion for further de-
bugging of the observed error.

III. Gru Architecture

Figure 2 shows the steps involved in generating a Minion.
The execution trace is passed through a trace decoder that

converts the captured trace from binary to a human readable
format. The trace is also partitioned into trace blocks as it is
decoded. The instructions in the current trace block are copied
into replica.s as is. The label test is given to the first in-
struction of the trace block (which is copied into replica.s).
We keep track of the smallest PC value encountered in the cur-
rent trace block and then subtract this from the PC of all the
instructions to determine the offset of each instruction. The
instructions are written to replica.s at appropriate offsets
and nops are written if a particular PC within the minimum
and maximum PC values seen in the trace is not observed (see
line numbers 12 – 14 of replica.s in Figure 3(c)).

The next step is to analyze the current trace block to iden-
tify state elements which needs to be restored. All state ele-
ments that are produced in some earlier trace block and are
consumed in the current trace block have to be restored when
generating the corresponding Minion.

Once the state elements are identified, the values that
should be written to these state elements to restore the state
are identified using State Inference Techniques (discussed in
Section IV). After the values are determined, SRIs correspond-
ing to each state element are written to restore.s (discussed
in Section V).

Once the replica.s and restore.s is constructed, it is
compiled and linked using a standard compiler such as GCC
to generate the Minion (discussed in Section V.D).

IV. State Inference Techniques

Figure 3(a) shows a sample execution trace collected from a
LEON3 SoC and decoded into a human-readable form. Con-
sider the first line of the sample trace. The first hexadecimal
number (0x40010098) is the Program Counter (PC) of the
instruction. This is followed by the instruction disassembly.
The final hexadecimal number (0x00000300), if present, is the
data value produced by the instruction (and written to the
destination register). Similar information is captured in the
instruction traces captured by other DFD hardware such as
ARM CoreSight [13]. Figure 3(b) shows the captured trace
partitioned into two trace blocks.

The state inference technique should find the most recent
updates to (or values in) the state elements that are read before
being written to in the current trace block. The registers %o5
and %i2 as well as the memory location 0x0000000c shown in
Figure 3(b) are examples of such state elements.

The registers to be restored are easily identified by main-
taining two sets, REG RESTORE and REG WRITE. As an
instruction in the current trace block is decoded, the set
REG WRITE is looked up for the source registers. If a source
register is not found, it is added to REG RESTORE. Then
the destination register of the current instruction is added to
REG WRITE. The registers in REG RESTORE are the reg-
isters whose values at the block boundary need to be deter-

0x40010098 ld [%g2+0x000c], %o5 [0x00000300]
0x4001009c st %o5,[%g1+0x000c]
0x400100a0 add %g2, 0x0010, %g2 [0xfffff020]
0x400100a4 bgu 0x40010078
0x400100a8 add %g1, 0x0010, %g1 [0x400ffe24]
0x400100ac ld [%g2+0x000c], %o5 [0x00000010]
0x400100b0 srl %i2, 0x0004, %o5 [0x00000001]
0x400100b4 sll %o5, 0x0004, %g1 [0x00000010]
0x400100b8 add %o5, 0x0001, %o5 [0x00000002]
0x400100bc sub %i2, %g1, %i2 [0x00000000]

0x40010098 ld [%g2+0x000c], %o5 [0x00000300]
0x4001009c st %o5,[%g1+0x000c]
0x400100a0 add %g2, 0x0010, %g2 [0xfffff020]
0x400100a4 bgu 0x40010078
0x400100a8 add %g1, 0x0010, %g1 [0x400ffe24]
0x400100ac ld [%g2+0x000c], %o5 [0x00000010]
0x400100b0 srl %i2, 0x0004, %o5 [0x00000001]
0x400100b4 sll %o5, 0x0004, %g1 [0x00000010]
0x400100b8 add %o5, 0x0001, %o5 [0x00000002]
0x400100bc sub %i2, %g1, %i2 [0x00000000]
0x400100c0 sll %o5, 0x0004, %o5 [0x00000020]
0x400100c4 subcc %i2, 0x0003, %g0
0x400100c8 ld [%i2+0x000c], %g4 [0x00000300]
0x400100cc mov %i2, %g3 [0x00000000]
0x400100d0 bgu 0x40010048
0x400100d4 add %o5, %o5, %o5 [0x400ffe24]
0x400100d8 subcc %o5, 0x0040, %g0
0x400100dc be 0x400100f0
0x400100e0 mov 0x0000, %g1 [0x00000000]
0x400100f0 ret

State: %g0-%g7:0x0, %o0-%o7:0x0, ...

0x400100c0 sll %o5, 0x0004, %o5 [0x00000020]
0x400100c4 subcc %i2, 0x0003, %g0
0x400100c8 ld [%i2+0x000c], %g4 [0x00000300]
0x400100cc mov %i2, %g3 [0x00000000]
0x400100d0 bgu 0x40010048
0x400100d4 add %o5, %o5, %o5 [0x00000040]
0x400100d8 subcc %o5, 0x0040, %g0
0x400100dc be 0x400100f0
0x400100e0 mov 0x0000, %g1 [0x00000000]
0x400100f0 ret

State: %g0-%g7:0x0, %o0-%o7:0x0, ...

State: %o5:??, %i2:??, [0x0000000c]:??

Block 1

Block 2

(a) (b) (c)

 1: .global test
 2: .text
 3: test: sll %o5, 0x0004, %o5
 4: subcc %i2, 0x0003, %g0
 5: ld [%i2+0x000c], %g4
 6: mov %i2, %g3
 7: bgu 0x40010048
 8: add %o5, %o5, %o5
 9: subcc %o5, 0x0040, %g0
10: be 0x400100f0
11: mov 0x0000, %g1
12: nop
13: nop
14: nop
15: ret

replica.s

 1: .global rstr
 2: .extern test
 3: .text
 4: rstr: sethi %hi(0x000000300), %o1
 5: or %o1, %lo(0x00000300), %o1
 6: sethi %hi(0x00000000c), %o2
 7: or %o2, %lo(0x0000000c), %o2
 8: st %o1, [%o2]
 9: sethi %hi(0x000000002), %o5
10: or %o5, %lo(0x00000002), %o5
11: sethi %hi(0x000000000), %i2
12: or %i2, %lo(0x00000000), %i2
13: wrpsr 0xff400120
14: ba test
15: nop

restore.s

Fig. 3. (a) Sample execution trace captured by LEON3 SoC, (b) Trace blocks and state elements to restore for Block 2, (c) Minion (state
restoration and replicated instructions) corresponding to Block 2

mined. We assign a Physical Register Identifier (PRI) to each
register to uniquely identify the register to restore. This is
needed in ISAs such as SPARCv8 where several architectural
register names such as %o2 of one register window and %i2 of
its adjacent window are aliases to the same physical register.
Assigning PRI requires us to keep track of the Current Win-
dow Pointer (CWP) and the Window Invalid Mask (WIM) as
the execution trace is decoded. This is easy because these
fields are modified only by save and restore instructions.
The identification of the memory locations to restore would
require the knowledge of the values in the registers involved
in the address computation. Therefore, this is done only after
the values of the registers in REG RESTORE is inferred using
state inference techniques discussed next.

This work focuses on restoring only the architectural state
(state of registers and memory) of the system. Therefore, only
the functional behavior of the system such as the instructions
and their sequence, and the results (values) produced by the
instructions, is reproduced by the Minion. This makes our tool
applicable to detect bugs that influence the final architectural
state of the system and can complement other bug localization
techniques [7, 11]. Faithful reproduction of timing behavior
would also require the micro-architectural state (state of cache
lines accessed and the memory-management unit mappings).
We will cover timing behavior replication in a future work.

We propose three state inference techniques to determine
the value in the state elements (registers and memory loca-
tions) thus identified.

A. Brute-force Method

The simplest technique to infer the values of state ele-
ments is to scan the execution trace backwards starting from
the block boundary. This technique is called the Brute-force
method. This technique is time consuming because of the back-
ward scan that goes instruction by instruction.

After the values in the set REG RESTORE has been iden-

tified using backward scans starting from the block boundary,
we do another forward pass to identify the memory locations
to restore. For each load and store instruction, a backward
scan from it is initiated to identify the most recent update
to the source registers involved. This is required to compute
the address of the memory locations involved. Such backward
scans will go at most till the start of the current block. A sim-
ilar procedure is followed using the sets MEM RESTORE and
MEM WRITE to identify memory location to restore. For the
memory locations in MEM RESTORE, a Brute-force strategy
is adopted to determine the values to be restored. If a store
instruction writes a double word into the memory (using std

instead of st), then it would result in two bus transactions.
In this case, the value associated with subsequent transactions
have to be accounted against the adjacent memory location
instead of the one available in the trace. This allows correct
inference of the value in the adjacent memory location.

B. Snapshots-saving Method

The second technique, called Snapshots-saving method, aims
to reduce the time taken for such backward scans by main-
taining an incremental snapshot of the updates to the state
elements in the current trace block. A snapshot includes the
value at the end of the trace block for each state element that
was updated. For example, a snapshot captured at the end of
Block 1 (in Figure 3(b)) will have an entry <%o5,0x00000002>
in its snapshot corresponding to the most recent value of %o5.
Here, we only store the most recent value of %o5, although it
was updated several times in the trace block. Also, the snap-
shot does not contain any entry for state elements that are
not updated in the trace block. Therefore, in order to find the
most recent value, this method goes from one snapshot to the
previous snapshot, instead of going instruction by instruction.
The rest of the procedure, where the state elements to restore
are identified in the forward pass, remains the same as in the
case of the Brute-force method.

C. Inverted Map Method

We further improve upon the Snapshots-saving method by
entirely eliminating the need for a backward scan. The elimi-
nation of backward scans offers two benefits: (i) the time taken
to search for the most recent value reduces, and (ii) there is
no need to store multiple snapshots. This is achieved by main-
taining a map of all state elements that were updated since the
start of the execution trace and their recent values. This cu-
mulative map of updated state elements and their most recent
values is called the Inverted Map. The value stored against
each state element is overwritten as and when the state ele-
ment is updated by a more recent instruction. Therefore, the
history of updates is lost, unlike in Snapshots-saving method
where the history of updates is captured across several snap-
shots if the state element was updated in several trace blocks.

The Inverted Map is looked up to find the most recent value
of any state element that needs to be restored. Such immedi-
ate look-ups take constant time if the Inverted Map is imple-
mented using a Hash-table. The size of the Inverted Map can
keep increasing as different state elements are updated over
the course of the execution. However, the number of entries in
the Inverted Map is bounded by the number of state elements
(all registers and memory locations).

When a load or store instruction is encountered, the values
in the source registers at that point is readily available in the
Inverted Map. Therefore, the address computation can be
performed immediately, thereby avoiding any backward scans.
The rest of procedure to infer the memory locations to be
restored and their values remains the same as above.

V. State Restoration

A. Register State Restoration

Once the registers to restore have been identified and their
corresponding values are determined using one of the state
inference techniques, we emit a sequence of sethi and or in-
structions per register to be restored to set the register content
to the determined 32-bit value. For example, consider the in-
structions at line numbers 9 and 10 of the restore.s shown
in Figure 3(c). These two instructions set the register %o5 to
0x00000002. Similarly, the instructions at line numbers 11 and
12 set the register %i2 to 0x00000000.

B. Memory State Restoration

The memory state restoration is a three step process. The
address of the memory location to restore is first written to a
register. The value to store into that memory location is writ-
ten to another register next. Finally, a store (st) instruction
is emitted to write the value into the corresponding memory
location. Let us consider the example shown in Figure 3(c).
The line numbers 4 and 5 in restore.s writes the value to
store 0x00000300 into the register %o1. The line numbers 6
and 7 writes the address of the memory location 0x0000000c

to the register %o2. The store instruction (st %o1, [%o2])
on line number 8 actually writes the value determined by the
state inference techniques to the memory location whose state
needs to be restored.

C. Processor-specific Register Restoration

In addition to emitting instructions that restore the state
of General Purpose Registers (GPRs) on execution, we also
have to insert an instruction that restores the state of the
Processor (or Machine) Specific Register (PSR). The PSR in
SPARCv8 ISA contains condition codes, the supervisor bit,
CWP, WIM and other machine-specific details. Therefore,
the starting state of the PSR dictates the behavior of several
instructions such as branch, call, and privileged instructions.

Many instructions such as compare instructions, save and
restore update the PSR implicitly. These updates to the PSR
are not captured in the execution trace explicitly. Therefore
the techniques to determine the value of state elements dis-
cussed earlier are not suitable to infer the value of the PSR.

Several bits in the PSR contain static information such as
the version. These are known apriori and can be readily used
in the SRI. However, PSR also contains bits that are influenced
by the dynamic behavior of the instructions such as condition
codes and register window pointers (WIM and CWP). Since
the CWP and the WIM bits are kept track by us to generate
the PRI, their values are readily available. A similar approach
to keep track of the condition codes is tedious and error prone
because SPARCv8 has many instructions that modify these
bits.

We adopt a different strategy of inspecting the branching
behavior in the current trace block to determine the starting
state of the condition codes. If a branch is taken, then from
the opcode we can infer the flags that influence the branch out-
comes. Let us consider the bgu instruction (fifth instruction)
of Block 2 (shown in Figure 3(b)). We know this branch was
not taken because the PC of the second instruction after bgu
(or instruction after the delay slot) is part of the straight-line
execution. This indicates that the carry flag or the zero flag
is set to 1 [14]. We repeat such inference for all the branch
instructions in the current trace block. For example, consider
the behavior of the be instruction (eighth instruction of Block
2). Since this branch is taken, we infer the value of zero flag
to be 1. The final value of the condition codes is the inter-
section of the values inferred. In a scenario where conflicting
values inferred, the values of the condition codes that were in-
ferred from the branch instruction closer to the start of trace
block takes precedence. If there are no branch instructions in
the current block that are influenced by some flags, then the
starting state of those flags do not matter and so the condition
code bits are set to 0. Similarly, the value of the supervisor bit
is inferred to be 1 if there is a privileged instruction in the cur-
rent trace block that has succeeded (without generating any
traps).

Once the values of these bits are inferred, a wrpsr instruc-
tion is written to restore.s (as seen in line number 13 of
restore.s in Figure 3(c)).

D. Linking and Compilation

Since the execution of the memory state restoration instruc-
tions itself uses a few registers (%o1 and %o2 in our example),
the instructions to restore memory state (line numbers 4 – 8 in
restore.s of Figure 3(c)) are placed before the instructions to
restore the register state (line numbers 9 – 12). The instruc-
tion to restore the %psr comes next (line number 13). Finally,
the control is transferred to the replicated instructions using a

ai
fft

r0
1

ai
iff

t0
1

au
tc

or
00

ba
se

fp
01

co
nv

en
00

fb
ita

l0
0

id
ct

rn
01

m
at

rix
01

te
lff

t0
0

te
lif

ft0
0

m
ea

n
Benchmarks

100

101

102

103

104

105

106

Ru
nt

im
e

(s
)

Block size = 4K, invertedmap
Block size = 4K, snapshots
Block size = 16K, invertedmap
Block size = 16K, snapshots

Block size = 32K, invertedmap
Block size = 32K, snapshots
Block size = 64K, invertedmap
Block size = 64K, snapshots

Fig. 4. Minion Generation Time

Branch Always (BA) instruction (ba test in line 14). A nop

is added to the delay slot of the ba (line 15).
We replicate the PC values of the complex test case by us-

ing a linker script to guide the placement of the text section
(of the replicated instructions) of the Minion. The object file
generated from restore.s is placed at an address range that
is not touched by the replicated instructions. The entry point
of the Minion is set to the symbol rstr.

VI. Experiments

We used a LEON3 SoC with one SPARCv8 core (with 8
register windows), AMBA Advanced High-performance Bus
(AHB), DDR controller and a Debug Support Unit (DSU).
We enabled a 4KB Instruction Trace Buffer and a 4KB AHB
Trace Buffer to collect LEON3 instruction trace as well as
AHB bus traces.

We experimented with 10 benchmarks from the EEMBC
AutoBench and TeleBench suites. These benchmarks were
compiled using the Bare-C Cross Compiler for LEON3 (BCC
v2.0.7), and could run without an Operating System (as bare-
metal applications). We report the results of only the bench-
marks whose execution time was more than 10ms because they
are representative of long running test cases. The instruction
and bus traces generated during the 10ms execution were cap-
tured. The resulting execution trace had 369K messages (oc-
cupying approx. 5.6MB) on average (with a minimum and
maximum of 316K and 398K messages respectively).

Gru was implemented in Python v3.10 and executed on an
Intel Xeon Gold 5218R processor (2.1 GHz base frequency)
with 32 GB RAM. The generated Minions were re-executed
on the LEON3 SoC and its execution traces were collected.
The traces generated from the Minion were then compared
against the corresponding sections of the original trace. We
did not observe any deviations in instruction behavior or their
sequence, thereby validating our implementation.

A. Minion Generation Time

Figure 4 shows the time taken to generate Minions for dif-
ferent block sizes. We see that the time taken to generate

Minions using the Inverted Map technique far outperforms
the Snapshots-saving technique. The time taken to generate
Minions when using Snapshots is up to three orders of magni-
tude greater (on average) than when using an Inverted Map.
This shows that backward scans are quite time consuming and
eliminating them is indeed beneficial. The generation time us-
ing the Brute-force method is another two orders of magnitude
greater than Snapshots-saving method and hence is not shown
here.

We also notice that, in the Inverted Map technique, the av-
erage time taken to generate Minions gradually reduces from
7.79s to 6.02s as the block size increases from 4KB to 64KB,
for an execution trace containing 369K trace messages (ap-
prox. 5.6MB) on average, which is quite scalable. This is
because the number of Minions to be generated reduces with
increasing block size. The same trend is not seen in the case of
Snapshot-saving technique because the amount of work done
to generate a Minion increases with increasing block size.

B. Space Overhead

Figures 5 and 6 shows the total space consumed to store
the Inverted Map and all the Snapshots respectively. We ob-
serve that the average space consumed by the Inverted Map
is 5.65KB (and a maximum of 14.7KB) which is nominal.
The size of the Inverted Map is independent of the block size.
The space consumed by the Snapshots reduces with increas-
ing block size because the number of blocks (and therefore the
number of Snapshots to store) decreases. We observe that the
average space consumed reduced from 75.88KB to 22.39KB
as the block size was increased from 4KB to 64KB. The space
consumed by the Snapshots is higher than that of the Inverted
Map because it captures the history of how values in a state
element have changed over time across Snapshots if the state
element was modified across several trace blocks. Such history
is not maintained in the Inverted Map.

C. State Restoration Overhead

Figure 7 shows the number of State restoration instructions
as a percentage of the number of replicated instructions in the
Minion. We observe that the average (geomean) state restora-
tion instruction overhead decreases from 9.62% to 2.7% as the
size of the block increases from 4KB to 64KB. This overhead
is not very significant and hence does not adversely affect the
execution time of the Minion. However, these additional state
restoration instructions added into each Minion enables it to
be executed independently of the others. This potentially al-
lows debugging to be performed on each Minion in parallel,
thereby saving significant time.

VII. Conclusion and Future Work

We presented a tool called Gru that decomposes the ex-
ecution of a complex test case into non-overlapping sections
and generates Minion executables that replicate the observed
behavior in each section independently. Further debugging
activities such as bug localization can now be performed in
parallel using these smaller executables. The proposed tool is
also useful to debug errors in scenarios where the source code

ai
fft

r0
1

ai
iff

t0
1

au
tc

or
00

ba
se

fp
01

co
nv

en
00

fb
ita

l0
0

id
ct

rn
01

m
at

rix
01

te
lff

t0
0

te
lif

ft0
0

m
ea

n
Benchmarks

0

2

4

6

8

10

12

14

M
ap

 m
em

or
y

(k
ilo

by
te

s)

Fig. 5. Space consumed by Inverted Map

ai
fft

r0
1

ai
iff

t0
1

au
tc

or
00

ba
se

fp
01

co
nv

en
00

fb
ita

l0
0

id
ct

rn
01

m
at

rix
01

te
lff

t0
0

te
lif

ft0
0

m
ea

n

Benchmarks

0

10

20

30

40

50

60

70

Sn
ap

sh
ot

 m
em

or
y

(k
ilo

by
te

s)

Block size = 4K
Block size = 16K
Block size = 32K
Block size = 64K

Fig. 6. Space consumed by Snapshots (cumulative)

ai
fft

r0
1

ai
iff

t0
1

au
tc

or
00

ba
se

fp
01

co
nv

en
00

fb
ita

l0
0

id
ct

rn
01

m
at

rix
01

te
lff

t0
0

te
lif

ft0
0

ge
om

ea
n

Benchmarks

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
st

ru
ct

io
n

ov
er

he
ad

 (%
)

Block size = 4K
Block size = 16K
Block size = 32K
Block size = 64K

Fig. 7. Overhead of State Restoration Instructions

(or the executable) of the application that triggered the er-
ror is not available. We proposed three techniques to address
the challenge of inferring the starting state for each Minion by
analyzing the execution traces alone. We outlined a strategy
to construct each Minion in such a way that the state restora-
tion instructions inserted are executed first to restore the state
of the system to the state that prevailed at the start of the
corresponding section, and then transfers control to the repli-
cated instructions. This ensured deterministic reproduction of
the functional behavior observed in the corresponding section
of the original execution of the complex test case. Through
extensive validation on EEMBC benchmarks using a LEON3
SoC, we demonstrate the usefulness of the proposed tool. This
demonstration establishes a firm base for replicating timing
behaviors of complex test cases in future.

References

[1] W. R. Group and S. EDA, “Functional ver-
ification study - 2022.” [Online]. Available:
https://resources.sw.siemens.com/en-US/white-paper-2022-

wilson-research-group-functional-verification-study-fpga-
functional-verification-trend-report

[2] B. Kumar, J. Adhaduk, K. Basu, M. Fujita, and V. Singh, “A
methodology to capture fine-grained internal visibility during
multisession silicon debug,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 1002–
1015, 2020.

[3] H. F. Ko, A. B. Kinsman, and N. Nicolici, “Design-for-debug
architecture for distributed embedded logic analysis,” IEEE
transactions on very large scale integration (VLSI) systems,
vol. 19, no. 8, pp. 1380–1393, 2010.

[4] S. Chandran, P. R. Panda, S. R. Sarangi, A. Bhattacharyya,
D. Chauhan, and S. Kumar, “Managing trace summaries to
minimize stalls during postsilicon validation,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 6, pp. 1881–1894, 2017.

[5] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia,
“A survey on adaptive random testing,” IEEE Transactions
on Software Engineering, vol. 47, no. 10, pp. 2052–2083, 2019.

[6] A. Banerjee, B. Pal, S. Das, A. Kumar, and P. Dasgupta, “Test
generation games from formal specifications,” in Proceedings
of the 43rd annual Design Automation Conference, 2006, pp.
827–832.

[7] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq,
N. Hakim, H. Naeimi, D. S. Gardner, and S. Mitra, “Qed:
Quick error detection tests for effective post-silicon validation,”
in 2010 IEEE International Test Conference. IEEE, 2010, pp.
1–10.

[8] D. Lin, T. Hong, Y. Li, S. Eswaran, S. Kumar, F. Fallah,
N. Hakim, D. S. Gardner, and S. Mitra, “Effective post-
silicon validation of system-on-chips using quick error detec-
tion,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 33, no. 10, pp. 1573–1590,
2014.

[9] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett,
D. Stoffel, and W. Kunz, “Symbolic quick error detection using
symbolic initial state for pre-silicon verification,” in 2018 De-
sign, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 55–60.

[10] S.-B. Park, A. Bracy, H. Wang, and S. Mitra, “Blog: Post-
silicon bug localization in processors using bug localization
graphs,” in Proceedings of the 47th Design Automation Con-
ference, 2010, pp. 368–373.

[11] O. Friedler, W. Kadry, A. Morgenshtein, A. Nahir, and
V. Sokhin, “Effective post-silicon failure localization using dy-
namic program slicing,” in 2014 Design, Automation & Test

in Europe Conference & Exhibition (DATE). IEEE, 2014, pp.
1–6.

[12] S.-L. Hong and K.-J. Lee, “A run-pause-resume silicon debug
technique for multiple clock domain systems,” in 2017 Interna-
tional Test Conference in Asia (ITC-Asia), 2017, pp. 46–51.

[13] ARM, “Coresight components technical reference man-
ual.” [Online]. Available: https://developer.arm.com/
documentation/ddi0314/latest/

[14] S. I. Inc., “The sparc architecture manual version 8.” [Online].
Available: https://gaisler.com/doc/sparcv8.pdf

